Skip to main content
Log in

Altered sterol synthesis and its relationship to fluid-phase endocytosis in a macrophage cell line P388D1

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

In a previous study glucocorticoids have been shown to depress the rate of fluid-phase endocytosis in a macrophage cell line, P388D1. This effect was observed when either fluorescein-labeled dextran or horseradish peroxidase (HRP) was used to measure endocytosis. In this report the relationship between cholesterol synthesis and endocytosis was examined in light of the ability of glucocorticoids to inhibit cholesterol biosynthesis. Two known inhibitors of cholesterol biosynthesis, ML-236B and 25-hydroxycholesterol (25-OH), were compared with dexamethasone (dex) for the ability to suppress endocytosis in cells grown in media supplemented with either 10% whole or delipidized neonatal bovine serum (NBS). In 10% whole serum all inhibitors reduced the uptake of HRP after 12 h incubation. Dexamethasone (1 μM) suppressed endocytosis by 30% whereas 25-OH (2.5 μM) and ML-236B (11.6 μM) inhibited by 38 and 52%, respectively. Supplementation of the growth medium with mevalonolactone (3.4 mM) prevented the inhibition of endocytosis by ML-236B. In contrast, mevalonolactone supplementation did not prevent either dex or 25-OH from suppressing endocytosis. The same pattern of results was obtained when cultures were grown in delipidized NBS.

After 4 h all inhibitors caused a decrease in amount of [14C]acetate incorporated into both nonsaponifiable lipids and digitonin precipitable sterols. Although dex inhibited cholesterol biosynthesis, total cellular cholesterol was unaffected by dex treatment after 24 h incubation. It is suggested that in addition to suppressing mevalonate synthesis, 25-OH, and by analogy dex, may act at some metabolic site(s) distal to the formation of mevalonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein, J. L.; Faust, J. R.; Dygos, J. H.; Chorvat, R. J.; Brown, M. S. Inhibition of cholesteryl ester formation in human fibroblasts by an analogue of 7-ketocholesterol and by progesterone. Proc. Natl. Acad. Sci. USA 75: 1877–1881; 1978.

    Article  PubMed  CAS  Google Scholar 

  2. Brown, M. S.; Dana, S. E.; Goldstein, J. L. Cholesterol ester formation in cultured human fibroblasts. J. Biol. Chem. 250: 4025–4027; 1975.

    PubMed  CAS  Google Scholar 

  3. Basu, S. K.; Goldstein, J. L.; Brown, M. S. Characterization of the low density lipoprotein receptor in membranes prepared from human fibroblasts. J. Biol. Chem. 253: 3842–3856; 1978.

    Google Scholar 

  4. Heiniger, H. J.; Kandutsch, A. A.; Chen, H. W. Depletion of L-cell sterol depresses endocytosis. Nature 263: 515–517; 1976.

    Article  PubMed  CAS  Google Scholar 

  5. Heiniger, H. J.; Marshall, J. D. Pinocytosis in L cells: its dependence on membrane sterol and the cytoskeleton. Cell Biol. Int. Rep. 3: 409–420; 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Humphries, G. M. K.; McConnell, H. M. Potent immunosuppression by oxidized cholesterol. J. Immunol. 122: 121–126; 1979.

    PubMed  CAS  Google Scholar 

  7. Schroepfer, G. J. Sterol biosynthesis. Ann. Rev. Biochem. 50: 585–621; 1981.

    Article  PubMed  CAS  Google Scholar 

  8. Melnykovych, G.; Matthews, E.; Gray, S.; Lopez, I. Inhibition of cholesterol biosynthesis in HeLa cells by glucocorticoids. Biochem. Biophys. Res. Commun. 71: 506–512; 1976.

    Article  PubMed  CAS  Google Scholar 

  9. Henz, K.; Kudchodkar, B. J.; Chait, A.; Albers, J. J.; Bierman, E. L. The effect of hydrocortisone on cholesterol metabolism of cultured human skin fibroblasts. Biochim. Biophys. Acta 666: 199–204; 1981.

    Google Scholar 

  10. Kaneko, I.; Hazama-Shimada, Y.; Endo, A. Inhibitory effects on lipid metabolism in cultured cells of ML-236B, a potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Eur. J. Biochem. 87: 313–321; 1978.

    Article  PubMed  CAS  Google Scholar 

  11. Dawe, C. J.; Potter, M. Morphological and biochemical progression of a lymphoid neoplasm of a mouse in vivo and in vitro. Am. J. Pathol. 33: 603; 1957.

    Google Scholar 

  12. Cham, B. E.; Knowles, B. R. A solvent system for delipidation of plasma or serum without protein precipitation. J. Lipid Res. 17: 176–181; 1976.

    PubMed  CAS  Google Scholar 

  13. Willingham, M. C.; Yamada, S. S. A mechanism for the destruction of pinosomes in cultured fibroblasts. J. Cell Biol. 78: 480–487; 1978.

    Article  PubMed  CAS  Google Scholar 

  14. Lowry, O. H.; Rosenbrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  15. Steinman, R. M.; Cohn, Z. A. The interaction of soluble horseradish peroxidase with mouse peritoneal macrophages in vitro. J. Cell Biol. 55: 186–204; 1972.

    Article  PubMed  CAS  Google Scholar 

  16. Bates, S. R.; Rothblat, G. H. Regulation of cellular sterol flux and synthesis by human serum lipoproteins. Biochim. Biophys. Acta 360: 38–55; 1974.

    PubMed  CAS  Google Scholar 

  17. Miller, S. C.; Melnykovych, G. Inhibition by glucocorticoids of endocytosis in a macrophagelike cell line. J. Cell. Biochem. 18: 423–431; 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Quintart, J.; Leroy-Houyet, M.; Trouet, T.; Baudhuin, P. Endocytosis and chloroquine accumulation during the cell cycle of hepatoma cells in culture. J. Cell Biol. 82: 644–653; 1979.

    Article  PubMed  CAS  Google Scholar 

  19. Weissman, G.; Sessa, G.; Weissman, S. Effects of steroids and Triton X-100 on glucose-filled phospholipid/cholesterol structures. Nature 208: 649–651; 1965.

    Article  Google Scholar 

  20. Kaplan, J.; Keogh, E. A. Analysis of the effect of amines on inhibition of receptor-mediated and fluid-phase pinocytosis in rabbit alveolar macrophages. Cell 24: 925–932; 1981.

    Article  PubMed  CAS  Google Scholar 

  21. Johnston, D.; Cavenee, W. K.; Ramachandran, C. K.; Melnykovych, G. Cholesterol biosynthesis in a variety of cultured cells: Lack of correlation between synthesis and activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase caused by dexamethasone. Biochim. Biophys. Acta 572: 189–192; 1979.

    Google Scholar 

  22. Werb, Z.; Foley, R.; Munck, A. Glucocorticoid receptors and glucocorticoid-sensitive secretion of neutral proteinases in a macrophage line. J. Immunol. 121: 115–121; 1978.

    PubMed  CAS  Google Scholar 

  23. Streuli, R. A.; Chung, J.; Scanu, A. M.; Yachnin, S. Serum lipoproteins modulate oxygenated sterol insertion into human red cell membranes. Science 212: 1294–1296; 1980.

    Article  Google Scholar 

  24. Johnston, D.; Matthews, E. R.; Melnykovych, G. Glucocorticoid effects on lipid metabolism in Hela cells: inhibition of cholesterol synthesis and increased sphingomyelin synthesis. Endocrinology 107: 1482–1488; 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Cavenee, W. K.; Melnykovych, G. The induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase in HeLa cells by glucocorticoids. J. Biol. Chem. 252: 3272–3276; 1977.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported, in part, by a Public Health Service Research grant (CA-08315) from the National Cancer Institute, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, S.C., Melnykovych, G. Altered sterol synthesis and its relationship to fluid-phase endocytosis in a macrophage cell line P388D1 . In Vitro 19, 853–862 (1983). https://doi.org/10.1007/BF02618165

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618165

Key words

Navigation