Skip to main content
Log in

An organ culture of postnatal rat liver slices

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

A technique for the organ culture of postnatal and adult rat liver has been developed. Liver slices, 0.3 mm thick, were maintained in Conway units at the interphase between medium and a 95% O2:5% CO2 atmosphere. Postnatal liver in culture for up to 72 h had healthy hepatocytes throughout the explants; if adult liver was used the upper 0.2 mm was healthy after 24 h. These slices incorporated tritiated orotate and leucine into trichloroacetic acid-precipitable material. Incorporation of orotate was shown to be spread over the entire slice of neonatal liver. Culturing did not alter the potassium ion content of postnatal liver. Tyrosine aminotransferase activity in liver slices from postnatal, adult, and adrenalectomized adult rats was stimulated by glucocorticoids and dibutyryl cyclic AMP. Cycloheximide and actinomycin D prevented this response. Further, cortisol exerted a permissive effect on the stimulation of tyrosine aminotransferase activity by dibutyryl cyclic AMP in slices from adrenalectomized rats. Induction of urea cycle enzymes by cortisol was demonstrated in cultures of liver from adrenalectomized adult animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berry, M. N.; Friend, D. S.. High-yield preparation of isolated rat liver parenchymal cells. J. Cell Biol. 43: 506–520; 1969.

    Article  PubMed  CAS  Google Scholar 

  2. Trowell, O. A. The culture of mature organs in a synthetic medium. Exp. Cell Res. 16: 118–147; 1959.

    Article  PubMed  CAS  Google Scholar 

  3. Campbell, A. K.; Hales, C. N. Maintenance of viable cells in an organ culture of mature rat liver. Exp. Cell Res. 68: 33–42; 1971.

    Article  PubMed  CAS  Google Scholar 

  4. Siddle, K.; Kane-Maguire, B.; Campbell, A. K. Effects of glucagon and insulin on adenosine 3′:5′-cyclic monophosphate concentrations in an organ culture of mature rat liver. Biochem. J. 132: 765–773; 1973.

    PubMed  CAS  Google Scholar 

  5. Campbell, A. K.; Siddle, K. The estabishment of a hormonally sensitive organ culture for adult rat liver. Diabetologia 9: 42; 1973.

    Google Scholar 

  6. Liberti, J. P.; DuVall, C. H.; Wood, D. M.In vitro induction of tyrosine aminotransferase in liver slices by hydrocortisone. Can. J. Biochem. 49: 1357–1361; 1971.

    Article  PubMed  CAS  Google Scholar 

  7. Luria, E. A.; Bakirov, R. D.; Yeliseyeva, T. A.; Abelev, G. I.; Friedenstein, A. Y. Differentiation of hepatic and hematopoietic cells and synthesis of blood serum proteins in organ cultures of the liver. Exp. Cell Res. 54: 111–117; 1969.

    Article  PubMed  CAS  Google Scholar 

  8. DeBelle, R. C.; Brown, A.; Blacklow, N. R.; Donaldson, R. M.; Lester, R. Organ culture of fetal liver: a new model system. Pediatr. Res. 7: 292; 1973.

    Google Scholar 

  9. DeBelle, R. C.; Blacklow, N. R.; Baylon, M.; Little, J. M.; Lester, R. Bile acid conjugation in fetal hepatic organ cultures. Am. J. Physiol. 231: 1124–1128; 1976.

    PubMed  CAS  Google Scholar 

  10. Wicks, W. D. Induction of tyrosine-α-ketoglutarate transaminase in fetal rat liver. J. Biol. Chem. 242: 900–906; 1968.

    Google Scholar 

  11. Wicks, W. D. Tyrosine-α-ketoglutarate transaminase: induction by epinephrine and adenosine-3′,5′-cyclic phosphate. Science 160: 997–998; 1968.

    Article  PubMed  CAS  Google Scholar 

  12. Raiha, N. C. R.; Schwartz, A. L.; Lindroos, M. C. Induction of tyrosine-α-ketoglutarate transaminase in fetal rat and fetal human liver in organ culture. Pediatr. Res. 5: 70–76; 1971.

    CAS  Google Scholar 

  13. Reed, G. B.; Grisham, J. W. Insulin and hydrocortiosone effects on viability and glycogen stores of postnatal rat liver organ culture. Lab. Invest. 33: 298–304; 1975.

    PubMed  CAS  Google Scholar 

  14. Sigot-Luizard, M. F. Culture organotypique de foie normal de rat nouveau-ne. C. R. Acad. Sci. [D] (Paris) 276: 619–620; 1973.

    CAS  Google Scholar 

  15. Mattheyse, F.; Balinsky, J. B. An organ culture of rat liver. S. Afr. J. Sci. 70: 90, 1974.

    Google Scholar 

  16. D'Amour, F. E.; Blood, F. R. Manual for laboratory work in mammalian physiology. Chicago, IL: Univ. of Chicago Press; 1959.

    Google Scholar 

  17. Mans, R. J.; Novelli, G. D. Measurement of the incorporation of radioactive amino acids into protein by a filter-paper disc method. Arch. Biochem. Biophys. 94: 48–53; 1961.

    Article  CAS  Google Scholar 

  18. Erasmus, C. S.; Sargeant, J.; Sellschop, J. P. F.; Watterson, J. I. W. Multi-element analysis of air and water pollutants in gold mines by thermal and epithermal reaction activation. Natl. Bur. Stand. (U.S.) Spec. Publ. 464: 129–136; 1977.

    CAS  Google Scholar 

  19. Balinsky, J. B.; Chemaly, S. M.; Currin, A. E.; Thompson, R. L.; Van der Westhuizen, D. R. A comparative study of enzymes of urea and uric acid metabolism in different species of amphibia and the adaptation to the environment of the tree frogChiromantis xerampelina Peters. Comp. Biochem. Physiol. 54B: 549–555; 1976.

    Google Scholar 

  20. Balinsky, J. B.; Coetzer, T. L.; Mattheyse, F. J. The effect of thyroxine and hypertonic environment on the enzymes of the urea cycle inXenopus laevis. Comp. Biochem. Physiol. 43B: 83–95; 1972.

    Google Scholar 

  21. Diamondstone, T. I. Assay of tyrosine transaminase activity by conversion ofp-hydroxy-phenylpyruvate top-hydroxybenzaldehyde. Anal. Biochem. 16: 395–401; 1966.

    Article  CAS  Google Scholar 

  22. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  23. Schimke, R. T. Studies of factors affecting levels of urea cycle enzyme in rat liver. J. Biol. Chem. 238: 1012–1018; 1963.

    PubMed  CAS  Google Scholar 

  24. Simkins, R. A.; Eisen, H. J.; Glinsmann, W. H. Functional integrity of fetal rat liver explants cultured in a chemically defined medium. Dev. Biol. 66: 344–352; 1978.

    Article  PubMed  CAS  Google Scholar 

  25. Laufs, R.; Walker, W. Metabolic and virological studies on primate liver organ cultures. Proc. Soc. Exp. Biol. Med. 133: 1006–1017; 1970.

    PubMed  CAS  Google Scholar 

  26. McLaughlin, C. W. Control of sodium, potassium and water content and utilization of oxygen in rat liver slices, studies by affecting cell membrane permeability with calcium and active transport with ouabain. Biochim. Biophys. Acta 323: 285–296; 1973.

    Article  PubMed  CAS  Google Scholar 

  27. Lin, E. C. C.; Knox, W. E. Adaptation of the rat liver tyrosine α-ketoglutarate transaminase. Biochem. Biophys. Acta 26: 85–88; 1957.

    Article  PubMed  CAS  Google Scholar 

  28. Wicks, W. D. Induction of hepatic enzymes by adenosine 3′,5′-monophosphate in organ culture. J. Biol. Chem. 244: 3941–3950; 1969.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased October 1, 1983.

This research was supported in part by a grant from the South African Council for Scientific and Industrial Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, A., Mattheyse, F.J. & Balinsky, J.B. An organ culture of postnatal rat liver slices. In Vitro 19, 841–852 (1983). https://doi.org/10.1007/BF02618164

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618164

Key words

Navigation