Skip to main content
Log in

Establishment of two rat hepatoma cell strains produced by a carcinogen initiation, phenobarbital promotion protocol

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Two Fischer 344 rat hepatoma cell strains, JM1 and JM2, have been isolated from a primary hepatocellular carcinoma. Primary tumor formation was induced in a two-thirds partially hepatectomized rat by a single low dose (70 mg/kg of diethylnitrosamine followed by chronic phenobarbital administration (0.1 g/100 ml drinking water). The primary tumors were passed three times by subcutaneous implantation of tumor fragments into the inguinal region of syngeneic recipients. The fourth pass way by injection of tumor cells directly into the livers of recipient rats. Several weeks later, the tumor-containing rat livers were subjected to collagenase perfusion. Two cell lines emerged from tissue culture of the cells isolated by perfusion. Each cell line was cloned by serial dilution. Cells JM1 and JM2 were tumorigenic when injected into syngeneic rats. The tumors, which arose from injected cell strains, exhibited several characteristics of hepatocellular carcinoma. Morphology was examined by light and electron microscopy. Histochemical studies of JM1 and JM2 cells grown in vitro and in vivo were done. The levels of tyrosine aminotransferase and three microsomal enzymes of importance to drug and carcinogen metabolism were investigated. To our knowledge, this is the first report of cell strains derived from an initiation promotion protocol in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Morris, H. P.; Slaughter, L. J. Development, growth rate, degree of malignancy, and chromosome pattern of Morris transplantable hepatomas. Lapis, K.; Johannessen, J. V., eds. Liver carcinogenesis. New York, NY: Hemisphere Publishing Corp.; 1979: 263–282.

    Google Scholar 

  2. Farber, E. The sequential analysis of liver cancer induction. Biochim. Biophys. Acta 605: 149–166; 1980.

    PubMed  CAS  Google Scholar 

  3. Craddock, V. M.. Liver cell cancer. Cameron, H. M.; Linsell, D. S.; Warwick, G. P. eds. Cell proliferation and experimental liver cell cancer. Amsterdam: Elsevier; 1976: 153–201.

    Google Scholar 

  4. Cameron, R.; Sweeny, G. D.; Jones, K.; Lee, G.; Farber, E. A relative deficiency of cytochrome P-450 and aromatic hydrocarbon (Benzo(alpha)pyrene) hydroxylase in hyperplastic nodules induced by acetylaminofluorene in rat liver. Cancer Res. 36: 3888–3893; 1976.

    PubMed  CAS  Google Scholar 

  5. Peraino, C.; Fry, R. J. M.; Staffeldt, E.; Kisielski, W. E. Effect of varying the exposure to phenobarbital on its enhancement of 2-acetylamino-fluorene-induced hepatic tumorigenesis. Cancer Res. 33: 2701–2705; 1973.

    PubMed  CAS  Google Scholar 

  6. Pitot, H. C.; Barsness, L.; Goldsworthy, T.; Kitagawa, T. Biochemical characterization of stages of hepatocarcinogenesis after a single dose of diethylnitrosamine. Nature 271: 456–458; 1978.

    Article  PubMed  CAS  Google Scholar 

  7. Deschenes, J.; Valet, J. P.; Marceau, N. Hepatocytes from newborn and waenling rats in monolayer culture: Isolation by perfusion, fibronectin-mediated adhesion, spreading and functional activities. In Vitro 16: 722–730; 1980.

    PubMed  CAS  Google Scholar 

  8. Seglen, P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 13:29–83; 1976.

    PubMed  CAS  Google Scholar 

  9. Elmore, E.; Swift, M. Growth of human skin fibroblasts in dialyzed fetal bovine serum. In Vitro 13: 837–842; 1977.

    Article  PubMed  CAS  Google Scholar 

  10. Rutenberg, A. H.; Kim, H.; Fischbein, J. W.; Hanker, J. S.; Wasserkrug, H. L.; Seligman, A. M. Histochemical and ultrastructural demonstration of gamma-glutamyl transpeptidase activity. J. Histochem. Cytochem. 17: 517–527; 1969.

    Google Scholar 

  11. Wachstein, M.; Meisel, E. Histochemistry of hepatic phosphatases at a physiological pH with special reference to the demonstration of bile canaliculi. Am. J. Clin. Pathol. 27: 12–23; 1957.

    Google Scholar 

  12. Michalopoulos, G.; Pitot, H. C. Primary culture of parenchymal liver cells on collagen membranes. Exp. Cell Res. 94: 70–78; 1975.

    Article  PubMed  CAS  Google Scholar 

  13. Omura, T.; Sato, R. The carbon monoxide-binding pigment of liver microsomes. J. Biol. Chem. 239: 2370–2378; 1964.

    PubMed  CAS  Google Scholar 

  14. Phillips, A. H.; Langdon, R. G. Hepatic triphosphopyridine nucleotide cytochrome P-450 reductase. Isolation, characterization and kinetic studies. J. Biol. Chem. 237: 2652–2660; 1962.

    PubMed  CAS  Google Scholar 

  15. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72: 248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  16. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  17. Granner, D. K.; Tomkins, G. M. Tyrosine aminotransferase (rat liver). Methods Enzymology. 17(A): 633–637; 1970.

    Google Scholar 

  18. Talanko, H.; Ruoslanti, E. Differential expression of alpha-fetoprotein and gamma-glutamyl transpeptidase in chemical and spontaneous hepatocarcinogenesis. Cancer Res. 39: 3495–3501; 1979.

    Google Scholar 

  19. Cameron, R.; Keller, A.; Kolin, A.; Malkin, A.; Farber, E. Gamma-glutamyl transferase in putative premalignant liver cell populations during hepatocarcinogenesis. Cancer Res. 38: 823–829; 1978.

    PubMed  CAS  Google Scholar 

  20. Jacobsen, J. E.; Putnam, J. E.; Matyas, G. R.; Morre, D. J. Gammaglutamyl transpeptidase activity of transformed rat hepatocytes. In Vitro 18: 285; 1982.

    Google Scholar 

  21. Miyake, Y.; Gaylor, J. L.; Morris, H. P. Abnormal microsomal cytochromes and electron transport in Morris hepatomas. J. Biol. Chem. 249(6): 1980–1987; 1974.

    PubMed  CAS  Google Scholar 

  22. Ryan, D. E.; Thomas, P. E.; Korzeniowski, D.; Levin, W. Separation and characterization of highly purified forms of liver microsomal cytochrome P-450 from rats treated with polychlorinated biphenyls, phenobarbital and 3-methylcholanthrene. J. Biol. Chem. 254(4): 1365–1374; 1979.

    PubMed  CAS  Google Scholar 

  23. Harada, N.; Omura, T. Selective induction of two different molecular species of cytochrome P-450 by phenobarbital and 3-methylcholanthrene. J. Biochem. 89: 237–248; 1981.

    PubMed  CAS  Google Scholar 

  24. Saito, T.; Strobel, H. W. Purification to homogeneity and characterization of a form of cytochrome P-450 with high specificity for benzo(a)pyrene from beta-naphthoflavone-pretreated rats. J. Biol. Chem. 256: 984–988; 1981.

    PubMed  CAS  Google Scholar 

  25. Van Rijn, H.; Bevers, M. M.; van Wijk, R.; Wicks, W. D. Regulation of phosphoenolpyruvate carboxykinase and tyrosine transaminase in hepatoma cell cultures III. Comparative studies in H35, HTC, MH1C1, and RLC cells. J. Cell Biol. 60: 181–191; 1974.

    Article  PubMed  Google Scholar 

  26. Diamondstone, T. I. Assay of tyrosine transaminase activity by conversion ofp-hydroxyphenylpyruvate top-hydroxybenzaldehyde. Anal. Biochem. 16: 395–401; 1966.

    Article  CAS  Google Scholar 

  27. Judah, D. J.; Legg, R. F.; Neal, G. E. Development of resistance to cytotoxicity during aflatoxin carcinogenesis. Nature 265: 343–345; 1977.

    Article  PubMed  CAS  Google Scholar 

  28. Conney, A. H.; Brown, R. R.; Miller, J. A.; Miller, E. C. The metabolism of methylated aminoazo dyes VI. Intracellular distribution and properties of the demethylase system. Cancer Res. 17: 628–633; 1957.

    PubMed  CAS  Google Scholar 

  29. Adamson, R. H.; Fouts, J. R. The metabolism of drugs by hepatic tumors. Cancer Res. 21: 667–672; 1957.

    Google Scholar 

  30. Potter, V. R. Transplantable animal cancer, the primary standard (guest editorial). Cancer Res. 21: 1331–1333; 1961.

    PubMed  CAS  Google Scholar 

  31. Conney, A. H.; Burns, J. J. Induced synthesis of oxidative enzymes in liver microsomes. Adv. Enzyme Regul. 1: 189–214; 1963.

    Article  CAS  PubMed  Google Scholar 

  32. Hart, L. G.; Adamson, R. H.; Morris, H. P.; Fouts, J. R. The stimulation of drug metabolism in various rat hepatomas. J. Pharmacol. Exp. Ther. 149: 7–15; 1965.

    PubMed  CAS  Google Scholar 

  33. Nebert, D. W.; Mason, H. S. A microsomal difference between normal liver and “minimal-deviation” hepatoma 5123 detectable by electron spin resonance. Biochim. Biophys. Acta 86: 415–417; 1964.

    PubMed  CAS  Google Scholar 

  34. Sugimura, T.; Ikeda, K.; Hirota, K.; Hozumi, M.; Morris, H. P. Chemical and enzymatic and cytochrome assays of microsomal fraction of hepatomas with different growth rates. Cancer Res. 26: 1711–1716; 1966.

    PubMed  CAS  Google Scholar 

  35. Coon, M. J.; Haugen, D. A. Induction of multiple forms of mouse liver cytochrome P-450. J. Biol. Chem. 251: 1817–1827; 1976.

    PubMed  Google Scholar 

  36. Kohli, K. K.; Linko, P.; Goldstein, J. A. Multiple forms of solubilized and partially resolved cytochrome P-450 from rats induced by 2,3,5,2′,3′,5′ and 3,4,5,3′,4′,5′ hexachlorobiphenyls. Biochem. Biophys. Res. Commun. 100: 483–490; 1981.

    Article  PubMed  CAS  Google Scholar 

  37. Welton, A. F.; O'Neal, F. O.; Chaney, L. C.; Aust, S. D. Multiplicity of cytochrome P-450 hemoproteins in rat liver microsomes. J. Biol. Chem. 250: 5631–5639; 1975.

    PubMed  CAS  Google Scholar 

  38. Emerman, J. T.; Pitelka, D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13: 316–328; 1977.

    Article  PubMed  CAS  Google Scholar 

  39. Chambard, M.; Gabrion, J.; Mauchamp, J. Reorganization in culture of thyroid follicular cells-influence of collagen on the orientation of cell polarity. C. R. Acad. Sci. (Paris) 291: 79–81; 1980.

    CAS  Google Scholar 

  40. Michalopoulos, G.; Sattler, G. L.; Pitot, H. C. Maintenance of microsomal cytochromes b5 and P-450 in primary cultures of parenchymal liver cells. Life Sci. 18: 1139–1144; 1976.

    Article  PubMed  CAS  Google Scholar 

  41. Strom, S. C.; Michalopoulos, G. Collagen as a substrate for cell growth and differentiation. Meth. Enzymol. 82: 544–555; 1982.

    Article  PubMed  CAS  Google Scholar 

  42. Yamada, K. M.; Yamada, S. S.; Pastan, I. Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc. Natl. Acad. Sci. USA 73: 1217–1221; 1976.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These studies were supported by Grants CA-30241 and CA-26904 from the National Institutes of Health, Bethesda, MD, and Collaborative Research Agreement 808549 from the Environmental Protection Agency.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novicki, D.L., Jirtle, R.L. & Michalopoulos, G. Establishment of two rat hepatoma cell strains produced by a carcinogen initiation, phenobarbital promotion protocol. In Vitro 19, 191–202 (1983). https://doi.org/10.1007/BF02618059

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618059

Key words

Navigation