Skip to main content
Log in

Ischemic myocardial injury in cultured heart cells: Leakage of cytoplasmic enzymes from injured cells

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

An in vitro model of myocardial ischemia has been established with primary monolayer cultures of postnatal rat myocardial cells. Ischemic conditions were simulated in vitro by subjecting the myocardial cell cultures to various levels of oxygen and glucose deprivation. The experimental protocol consisted of treatment with 20% or 0% O2 and 1000, 500 or 0 mg glucose per 1 of medium for 4 or 24 hr. Control cultures were treated with 20% O2 and 1000 mg glucose. After the ischemic treatments, cultures of beating muscle (M) cells were evaluated for signs of injury, i.e. leakage of cytoplasmic enzymes into the culture medium. Differences were found in leakage of lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) from the cultures that were exposed to partial ischemia of glucose deprivation and from those cultures that were exposed to total ischemia of oxygen and glucose deprivation. Glucose deprivation alone resulted in a slight-to-moderate loss of LDH and CPK from the cells, whereas total ischemia resulted in a significant release of the two cytoplasmic enzymes. When the cultures were allowed to recover after ischemic treatment in complete medium (1000 mg glucose) and a normal atmosphere of 20% O2, they had levels of LDH leakage comparable to those of control cultures. Cell viability and total protein content of the ischemic cultures did not differ significantly from controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta, D., and M. Puckett. 1977. Ischemic myocardial injury in cultured heart cells: Preliminary observations on morphology and beating activity. In Vitro 13: 818–823.

    Article  PubMed  CAS  Google Scholar 

  2. DeLuca, M. A., J. S. Ingwall, and J. A. Bittl. 1974. Biochemical responses of myocardial cells in culture to oxygen and glucose deprivation. Biochem. Biophys. Res. Commun. 59: 749–756.

    Article  PubMed  CAS  Google Scholar 

  3. Ingwall, J. S., M. DeLuca, H. D. Sybers, and K. Wildenthal. 1975. Fetal mouse hearts: A model for studying ischemia. Proc. Nat. Acad. Sci. U.S.A. 72: 2809–2813.

    Article  CAS  Google Scholar 

  4. Shell, W. E., and B. E. Sobel. 1976. Biochemical markers of ischemic injury. Circ. 53 (Suppl. 1): 98–106.

    Google Scholar 

  5. Wenzel, D. G., J. W. Wheatley, and G. D. Byrd. 1970. Effects of nicotine on cultured rat heart cells. Toxicol. Appl. Pharmacol. 17: 774–785.

    Article  PubMed  CAS  Google Scholar 

  6. Tolnai, S. 1975. A method for viable cell count. Procedure 70111. T. C. A. Manual 1: 37–38.

    Article  Google Scholar 

  7. Oyama, V. I., and H. Eagle. 1956. Measurement of cell growth in tissue culture with a phenol reagent. Proc. Soc. Exp. Biol. Med. 91: 305–307.

    PubMed  CAS  Google Scholar 

  8. Dujovne, C. A., D. Shoeman, J. Bianchine, and L. Lasagna. 1972. Experimental bases for the different hepatoxicity of erythromycin preparations in man. J. Lab. Clin. Med. 79: 832–844.

    PubMed  CAS  Google Scholar 

  9. Rosalki, S. B. 1967. An improved procedure for serum creatine phosphokinase determination. J. Lab. Clin. Med. 69: 696–705.

    PubMed  CAS  Google Scholar 

  10. Jennings, R. B., J. H. Baum, and P. B. Herdson. 1965. Fine structural changes in myocardial ischemic injury. Arch. Pathol. 79: 135–143.

    PubMed  CAS  Google Scholar 

  11. Sobel, B. E. 1974. Salient biochemical features in ischemic myocardium. Circ. Res. 34–35 (Suppl. 3): 173–181.

    Google Scholar 

  12. Trump, B. F., W. J. Mergner, M. W. Kahng, and A. J. Saladino. 1976. Studies on the subcellular pathophysiology of ischemia. Circ. 53 (Suppl. 1): 17–26.

    Google Scholar 

  13. Shell, W. D., J. K. Kjekshus, and B. E. Sobel. 1971. Quantitative assessment of the extent of myocardial infarction in the conscious dog by means of analysis of serial changes in serum creatine phosphokinase activity. J. Clin. Invest. 50: 2614–2625.

    PubMed  CAS  Google Scholar 

  14. Jennings, R. B., J. P. Kaltenbach, and G. W. Smetters. 1957. Enzymatic changes in acute myocardial ischemic injury: Glutamic oxaloacetic transaminase, lactic dehydrogenase and succinic dehydrogenase. AMA Arch. Pathol. 64: 10–16.

    PubMed  CAS  Google Scholar 

  15. Jennings, R. B., C. E. Ganote, and K. A. Reimer. 1975. Ischemic tissue injury. Am. J. Pathol.81: 179–198.

    PubMed  CAS  Google Scholar 

  16. Hearse, D. J., and S. M. Humphrey. 1975. Enzyme release during myocardial anoxia: A study of metabolic protection. J. Mol. Cell. Cardiol. 7: 463–482.

    Article  PubMed  CAS  Google Scholar 

  17. Apstein, C. S., O. H. L. Bing, and H. J. Levine. 1976. Cardiac muscle function during and after hypoxia: Effects of glucose concentration, mannitol and isoproterenol. J. Mol. Cell. Cardiol. 8: 627–640.

    Article  PubMed  CAS  Google Scholar 

  18. Schelbert, H. R., J. S. Ingwall, H. D. Sybers, and W. L. Ashburn. 1976. Uptake of infarct-imaging agents in reversibly and irreversibly injured myocardium in cultured fetal mouse heart. Circ. Res. 39: 860–868.

    PubMed  CAS  Google Scholar 

  19. Hearse, D. J., and E. B. Chain. 1972. The role of glucose in the survival and recovery of the anoxic isolated perfused rat heart. Biochem. J. 128: 1125–1133.

    PubMed  CAS  Google Scholar 

  20. Henry, P. D., B. E. Sobel, and E. Braunwald. 1974. Protection of hypoxic guinea pig hearts with glucose and insulin. Am. J. Physiol. 226: 309–313.

    PubMed  CAS  Google Scholar 

  21. Lesch, M., H. Taegtmeyer, M. B. Peterson, and R. Vernick. 1976. Mechanism of the inhibition of myocardial protein synthesis during oxygen deprivation. Am. J. Physiol. 230: 120–126.

    PubMed  CAS  Google Scholar 

  22. Kao, R., D. E. Rannels, and H. E. Morgan. 1976. Effects of anoxia and ischemia on protein synthesis in perfused rat hearts. Circ. Res. 38 (Suppl. 1): 124–130.

    Google Scholar 

  23. Katz, A. M. 1973. Effects of ischemia on the contractile processes of heart muscle. Am. J. Cardiol. 32: 456–460.

    Article  PubMed  CAS  Google Scholar 

  24. William, J. R., S. W. Schaffer, C. Ford, and B. Safer. 1976. Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Circ. 53 (Suppl. 1): 3–14.

    Google Scholar 

  25. Ricciutti, M. A. 1972. Lysosomes and myocardial cellular injury. Am. J. Cardiol. 30: 498–502.

    Article  PubMed  CAS  Google Scholar 

  26. Hoffstein, S., G. Weissmann, and A. C. Fox. 1976. Lysosomes in myocardial infarction: Studies by means of cytochemistry and subcellular fractionation, with observations on the effects of methylprednisolone. Circ. 53 (Suppl. 1): 34–40.

    Google Scholar 

  27. Decker, R. S., A. R. Poole, E. E. Griffin, J. T. Dingle, and K. Wildenthal. 1977. Altered distribution of lysosomal cathepsin D in ischemic myocardium. J. Clin. Invest. 59: 911–921.

    Article  PubMed  CAS  Google Scholar 

  28. Wenzel, D. G., and D. Acosta. 1975. Labilization of lysosomes and mitochondriain situ by hypoxia and hypoxia-related factors. Res. Commun. Chem. Pathol. Pharmacol. 12: 173–176.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by Research Grant HL 18647 from the National Heart, Lung, and Blood Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acosta, D., Puckett, M. & McMillin, R. Ischemic myocardial injury in cultured heart cells: Leakage of cytoplasmic enzymes from injured cells. In Vitro 14, 728–732 (1978). https://doi.org/10.1007/BF02616170

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02616170

Key words

Navigation