Skip to main content
Log in

Cartilage tissue differentiation from mesenchymal cells derived from mature muscle in tissue culture

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Under the influence of biochemical components of bone matrix gelatin (BMG), cartilage differentiates in tissue culture from the connective tissue cell outgrowths of mature muscle. Proliferation and differentiation begin within 24 hr with synthesis of hyaluronate, continue with high levels of synthesis of DNA and hyaluronidase, and culminate in production of large quantities of chondroitin sulfate. The addition of hyaluronic acid to the culture medium during the first 48 hr of culture depresses, whereas chondroitin sulfate enhances, subsequent production of cartilage. These observations on the cell biosynthetic products prior to the appearance of mature cartilage suggest that the BMG-modified connective tissue outgrowths of mature muscle exhibit the developmental potential of embryonic axial mesenchyme. Whether muscle harbors embryonic cells in a programmed but not yet activated readiness (protodifferentiated state) to differentiate into cartilage, or simply contributes a population of temporarily dedifferentiated fibroblasts, is not known, but in any event, BMG switches the pathway of further development from fibrous connective tissue to cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levitt, D., and A. Dorfman. 1973. Control of chondrogenesis in limb bud cell cultures by bromodeoxyuridine. Proc. Nat. Acad. Sci. U.S.A. 70: 2201–2205.

    Article  CAS  Google Scholar 

  2. Zwilling, F. 1968. Morphogenetic phases in development. Dev. Biol. (suppl.) 2: 184–207.

    Google Scholar 

  3. Urist, M. R., H. Iwata, P. L. Ceccotti, R. L. Dorfman, S. D. Boyd, R. M. McDowell, and C. Chien. 1973. Bone morphogenesis in implants of insoluble bone gelatin. Proc. Nat. Acad. Sci. U.S.A. 70: 3511–3515.

    Article  CAS  Google Scholar 

  4. Nogami, H., and M. R. Urist. 1974. Substrata prepared from bone matrix for chondrogenesis in tissue culture. J. Cell Biol. 62: 510–519.

    Article  PubMed  CAS  Google Scholar 

  5. Urist, M. R., and H. Nogami. 1970. Morphogenetic substratum for differentiation of cartilage in tissue culture. Nature 225: 1051–1052.

    Article  PubMed  CAS  Google Scholar 

  6. Leaver, A. G., I. B. Holbrook, I. L. Jones, M. Thomas, and L. Sheil. 1975. Components of the organic matrices of bone and dentine isolated only after digestion with collagenase. Arch. Oral Biol. 20: 211–216.

    Article  PubMed  CAS  Google Scholar 

  7. Urist, M. R., H. Iwata, S. D. Boyd, and P. L. Ceccotti. 1974. Observations implicating an extracellular enzymic mechanism of control of bone morphogenesis. J. Histochem. Cytochem. 22: 88–103.

    PubMed  CAS  Google Scholar 

  8. Anderson, L. F., and W. D. McClure. 1973. An improved scintillation cocktail of high solubilizing power. Anal. Biochem. 51: 173–179.

    Article  PubMed  CAS  Google Scholar 

  9. Hata, R., and Y. Nagai. 1972. A rapid and micromethod for separation of acid glycosaminoglycans by two-dimensional electrophoresis. Anal. Biochem. 45: 462–468.

    Article  PubMed  CAS  Google Scholar 

  10. Toole, B. P., and J. Gross. 1971. The extracellular matrix of the regenerating newt limb: Synthesis and removal of hyaluronate prior to differentiation. Dev. Biol. 25: 57–77.

    Article  PubMed  CAS  Google Scholar 

  11. Bitter, T., and H. M. Muir. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330–334.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, A. H. 1946. Determination of pentose in the presence of large quantities of glucose. Arch. Biochem. 11: 269–278.

    CAS  Google Scholar 

  13. Saito, H., Y. Yamagata, and S. Suzuki. 1968. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfate. J. Biol. Chem. 243: 1536–1542.

    PubMed  CAS  Google Scholar 

  14. Hata, R., and Y. Nagai. 1973. A micro colorimetric determination of acidic glycosaminoglycans by two-dimensional electrophoresis on a cellulose acetate strip. Anal. Biochem. 52: 652–656.

    Article  PubMed  CAS  Google Scholar 

  15. Herd, I. K. 1972. Detection of radioactive acid mucopolysaccharides on electrophoresis membrane. Anal. Biochem. 48: 103–111.

    Article  PubMed  CAS  Google Scholar 

  16. Firschein, H. E., and J. O. Shill. 1966. The determination of total hydroxyproline in urine and bone extracts. Anal. Biochem. 14: 296–304.

    Article  PubMed  CAS  Google Scholar 

  17. Nevo, Z., and A. Dorfman. 1972. Stimulation of chrondromucoprotein synthesis in chondrocytes by extracellular chondromucoprotein. Proc. Nat. Acad. Sci. U.S.A. 69: 2069–2072.

    Article  CAS  Google Scholar 

  18. Toole, B. P. 1972. Hyaluronate turnover during chondrogenesis in developing chick limb and axial skeleton. Dev. Biol. 29: 321–329.

    Article  PubMed  CAS  Google Scholar 

  19. Holtzer, H., and J. Abbott. 1968. Oscillations of the chondrogenic phenotypein vitro. In: H. Ursprung (Ed.),The Stability of the Differentiated State. Springer-Verlag, New York, pp. 1–15.

    Google Scholar 

  20. Urist, M. R., R. Granstein, H. Nogami, L. Swenson and R. Murphy. 1977. Transmembrane bone morphogenesis across multiple walled diffusion chambers: New evidence for a diffusable bone morphogenetic property. AMA Arch. Surg. 112: 612–619.

    PubMed  CAS  Google Scholar 

  21. Meier, S., and E. D. Hay. 1974. Stimulation of corneal differentiation by interaction between cell surface and extracellular matrix. J. Cell Biol. 66: 275–291.

    Article  Google Scholar 

  22. Slavkin, H. C., P. Bringas, J. Cameronn, R. Lebaron and L. A. Bavetta. 1969. Epithelial and mesenchymal cell interactions with extracellular materialin vitro. J. Embryol. Exp. Morphol. 22: 395–405.

    PubMed  CAS  Google Scholar 

  23. Grobstein, C. 1955. Tissue interaction in the morphogenesis of mouse embryonic rudimentsin vitro. In: D. Rudnick (Ed.),Aspects of Synthesis and Order in Growth. Princeton University Press, Princeton, N.J., p. 233.

    Google Scholar 

  24. Lash, J. W. 1968. Phenotypic expression and differentiation:In vitro chrondrogenesis. In: H. Ursprung (Ed.),The Stability of the Differentiated State. Springer-Verlag, New York, pp. 17–23.

    Google Scholar 

  25. Huang, D. 1974. Effect of extracellular chondroitin sulfate on cultured chondrocytes. J. Cell Biol. 68: 881–886.

    Article  Google Scholar 

  26. Huang, D. 1977. Extracellular matrix-cell interactions and chondrogenesis. Clin. Orthop 123: 169–176.

    PubMed  CAS  Google Scholar 

  27. Kosher, R. A., and R. L. Church. 1975. Stimulation ofin vitro somite chondrogenesis by procollagen and collagen. Nature 258: 327–330.

    Article  PubMed  CAS  Google Scholar 

  28. Kosher, R. A., J. W. Lash, and R. R. Minor. 1973. Environmental enhancement ofin vitro chondrogenesis. Dev. Biol. 35: 210–220.

    Article  PubMed  CAS  Google Scholar 

  29. Solursh, M., S. Meier, and S. Vaerewyck. 1973. Modulation of extracellular matrix production by conditioned medium. Am. Zool. 13: 1051–1060.

    Google Scholar 

  30. Turing, A. M. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. London. 237: 37–72.

    Google Scholar 

  31. Wolpert, L. 1969. Positional and spatial pattern of cellular differentiation. J. Theoret. Biol. 52: 1–47.

    Article  Google Scholar 

  32. Crick, F. 1970. Diffusion in embryogenesis. Nature. 225: 420.

    Article  PubMed  CAS  Google Scholar 

  33. Wilby, O. K., and Ede, D. A. 1975. A model generating the pattern of cartilage skeletal elements in the embryonic chick limb. J. Theor. Biol. 52: 199–217.

    Article  PubMed  CAS  Google Scholar 

  34. Urist, M. R., P. H. Hay, F. Dubuc, and K. Buring. 1969. Ostogenetic competence. Clin. Orthop. 64: 194–220.

    PubMed  CAS  Google Scholar 

  35. Huggins, C. B. 1931. The formation of bone under the influence of the urinary tract. Arch. Surg. (Chicago) 22: 377–408.

    Google Scholar 

  36. Kahn, A. J., and D. J. Simmons. Chondrocyte-toosteocyte transformation of perichondrium free-epiphyseal cartilage. Clin. Orthop., in press.

  37. Urist, M. R., M. Nakagawa, N. Nakata, and H. Nogami. Experimental myositis ossificans. Arch. Pathol., in press.

  38. Kinoshita, S. 1971. Heparin as a possible initiator of genomic RNA synthesis in early development of sea urchin embryos. Exp. Cell Res. 64: 403–411.

    Article  PubMed  CAS  Google Scholar 

  39. Waldman, A., G. Marx, and J. Goldstein. 1974. Heparin as inhibitor of mammalian protein synthesis. Biochem. Biophys. Acta 343: 324–329.

    PubMed  CAS  Google Scholar 

  40. Thompson, R. C., Jr. 1973. Heparin osteoporosis. An experimental model using rats. J. Bone J. Surg. 55: 606–612.

    CAS  Google Scholar 

  41. McLean, F. C., and M. R. Urist. 1968.Bone. University of Chicago Press, Chicago, Ill.

    Google Scholar 

  42. Nogami, H., and Y. Terashima. 1976. Diffusion of bone morphogenetic activity from the residue of collagenase digested bone matrix through interstitial fluid. Clin. Orthop. 115: 268–273.

    PubMed  Google Scholar 

  43. Nakagawa, M., and M. R. Urist. 1977. Chondrogenesis in tissue cultures of muscle under the influence of a diffusable component of bone matrix. Proc. Soc. Exp. Biol. Med. 154: 568–572.

    PubMed  CAS  Google Scholar 

  44. Lavietes, B. B. 1970. Cellular interaction and chondrogenesisin vitro. Dev. Biol. 21: 584–610.

    Article  PubMed  CAS  Google Scholar 

  45. Urist, M. R. 1973. Enzymes in bone morphogenesis: Endogenous enzymic degradation of the morphogenetic property in bone solutions buffered by ethylemediaminetetraacetic acid (EDTA). In:Hard Tissue Growth, Repairand Remineralization., Ciba Symposium 11 (New Series). Associated Scientific Publ., Amsterdam, pp. 143–160.

    Google Scholar 

  46. Nathanson, M. A., S. R. Hilfer, and R. L. Searls. Formation of cartilage by non-chondrogenic cell types. Dev. Biol., in press.

  47. Anderson, H. C., and S. A. Griner. 1977. Cartilage inductionin vitro. Ultrastructural studies. Dev. Biol. 60: 351–358.

    Article  PubMed  CAS  Google Scholar 

  48. Mikulski, A., and M. R. Urist. 1977. Collagenase-released non-collagenous proteins of cortical bone matrix. Prep. Biochem. 75: 357–381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These investigations were supported by grants-in-aid from the USPHS, National Institute of Dental Research (DE-2103-01). Drs. Terashima and Nakagawa received a research fellowship from the Solo Cup Corporation. Charles Stamos was a Eugene and Marion Bailey Summer Student Research Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urist, M.R., Terashima, Y., Nakagawa, M. et al. Cartilage tissue differentiation from mesenchymal cells derived from mature muscle in tissue culture. In Vitro 14, 697–706 (1978). https://doi.org/10.1007/BF02616166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02616166

Key words

Navigation