Skip to main content
Log in

Physical and nutritional factors in gel culture of mammalian cells

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

The growth of human glioma cells, cultured as spherical colonies in agarose gel, stopped after about 10 days for both large and small colonies apparently due to an increased osmolality in the gel. When osmolality was kept under control by addition of distilled water, growth continued. However, a continuous increase in the population-doubling period, similar for both large and small colonies, then was observed. The increase persisted although excess amounts of nutrition were added. When the cells were cultured in liquid suspension above a thin layer of agarose gel and most of the medium was repeatedly changed, the colonies continued to grow beyond the limits in gel culture. HeLa and hamster embryonic lung cell colonies showed a growth pattern in agarose gel similar to the glioma cells. The results imply that the osmolality must be kept under precise control to prevent growth inhibition. However, it seems difficult to ascertain optimal growth in gel culture for more than about 2 weeks probably because of the accumulation of toxic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanders, F. K., and B. O. Burford. 1964. Ascites tumours from BHK21 cells transformed in vitro by polyoma virus. Nature 201: 786–789.

    Article  PubMed  CAS  Google Scholar 

  2. MacPherson, I., and L. Montagnier. 1964. Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology 23: 291–294.

    Article  PubMed  CAS  Google Scholar 

  3. Eagle, H., G. E. Foley, H. Koprowski, H. Lazarus, E. M. Levine, and R. A. Adams. 1970. Growth characteristics of virus transformed cells. J. Exp. Med. 131: 863–879.

    Article  PubMed  CAS  Google Scholar 

  4. Giard, D. J., S. A. Aaronson, G. J. Todaro, P. Arnstein, J. H. Kersey, H. Dosik, and W. P. Parks. 1973. In vitro cultivation of human tumours: Establishment of cell lines derived from a series of solid tumours. J. Nat. Cancer Inst. 51: 1417–1423.

    PubMed  CAS  Google Scholar 

  5. McAllister, R. M., and G. Reed. 1968. Colonial growth in agar of cells derived from neoplastic and non-neoplastic tissues of children. Pediatr. Res. 2: 356–360.

    Article  PubMed  CAS  Google Scholar 

  6. Carlsson, J. 1977. A proliferation gradient in three-dimensional colonies of cultured human cells. Int. J. Cancer 20: 129–136.

    Article  PubMed  CAS  Google Scholar 

  7. Carlsson, J., and U. Brunk. 1977. Fine structure of three-dimensional colonies of human glioma cells in agarose culture. Acta Pathol. Microbiol. Scand. Sect. A 85: 183–192.

    Google Scholar 

  8. Folkman, J., M. Hochberg, and D. Knighton. 1974. Self-regulation of growth in three dimensions: The role of surface area limitation. In: B. Clarksson, and R. Baserga (Eds.),Control of Proliferation in Animal Cells, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 833–842.

    Google Scholar 

  9. McAllister, R., G. Reed, and R. J. Huebner. 1967. Colonial growth in agar of cells derived from adenovirus-induced hamster tumours. J. Nat. Cancer Inst. 39: 43–53.

    PubMed  CAS  Google Scholar 

  10. Fox, M., and C. W. Gilbert. 1966. Continuous irradiation of a murine lymphoma line P388F in vitro. Int. J. Radiat. Biol. 11: 339–347.

    Article  CAS  Google Scholar 

  11. Nias, A. H. W., and M. Fox. 1968. Minimum clone size for estimating normal reproductive capacity of cultured cells. Br. J. Radiol. 41: 468–474.

    Article  PubMed  CAS  Google Scholar 

  12. Bennet, M., R. S. Cudkowicz, R. S. Foster, and D. Metcalf. 1971. Hemopoietic progenitor cells of W-anemic mice studied in vivo and in vitro. J. Cell Physiol. 71: 211–226.

    Article  Google Scholar 

  13. Dicke, K. A., M. G. C. Platenburg, and D. W. van Bekkum. 1971. Colony formation in agar: In vitro assay for haemopoietic stem cells. Cell Tissue Kinet. 4: 463–477.

    PubMed  CAS  Google Scholar 

  14. MacPherson, I. 1973. Soft agar techniques. In: P. F. Kruse, and M. K. Patterson (Eds.),Tissue Culture Methods and Applications. Academic Press, London and New York, pp. 276–280.

    Google Scholar 

  15. Westermark, B., J. Pontén, and R. Hugosson. 1973. Determinants for the establishment of permanent tissue culture lines from human gliomas. Acta Pathol. Microbiol. Scand. Sect A 81: 791–805.

    CAS  Google Scholar 

  16. Crowell, R. L., B. J. Landau, and L. Philipson. 1971. The early interaction of coxsackievirus B3 with HeLa cells (35732). Proc. Soc. Exp. Biol. Med. 137: 1082–1088.

    PubMed  CAS  Google Scholar 

  17. Kato, R. 1967. Localization of “spontaneous” and rous sarcoma virus-induced breakage in specific regions of the chromosomes of the Chinese hamster. Hereditas 58: 221–247.

    Article  PubMed  CAS  Google Scholar 

  18. Polson, A., and D. G. Parkyn. 1969. Determination of diffusion coefficients by spreading from thin layers. Biopolymers 7: 107–117.

    Article  CAS  Google Scholar 

  19. Arnott, S., A. Fulmer, W. E. Scott, I. C. M. Dea, R. Moorehouse, and D. A. Rees. 1974. The agarose double helix and its function in agarose gel structure. J. Mol. Biol. 90: 269–284.

    Article  PubMed  CAS  Google Scholar 

  20. Carlsson, J., H. Lundqvist, and J. Pontén. 1976. The measurement of spatial precursor distribution in cell culture. In Vitro 12: 571–579.

    Article  PubMed  CAS  Google Scholar 

  21. Sokal, R. R., and F. J. Rohlf. 1969.Biometry: The Principles and Practice of Statistics in Biological Research. W. H. Freeman Co., San Francisco, pp. 220–223.

    Google Scholar 

  22. Westermark, B. 1973. The deficient density-dependent growth control of human malignant glioma cells and virus-transformed glia-like cells in culture. Int. J. Cancer 12: 438–451.

    Article  PubMed  CAS  Google Scholar 

  23. Eagle, H. 1974. Some effects on environmental pH on cellular metabolism and function. In: B. Clarkson, and R. Baserga (Eds.),Control of Proliferation in Animal Cells, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 1–11.

    Google Scholar 

  24. Carlsson, J., and M. Malmqvist. 1977. Effects of bacterial agarase on agarose gel in cell culture. In Vitro 13: 417–422.

    Article  PubMed  CAS  Google Scholar 

  25. Waymouth, C. 1973. Determination and survey of osmolality in culture media. In: P. F. Kruse, and M. K. Patterson (Eds.),Tissue Culture Methods and Applications. Academic Press, London and New York, pp. 703–708.

    Google Scholar 

  26. Pirt, S. J., and E. J. Thackeray. 1964. Environmental influences on the growth of ERK-mamalian cells in monolayer culture. Exp. Cell Res. 33: 396–405.

    Article  PubMed  CAS  Google Scholar 

  27. Rubin, H. 1971. Growth regulation in cultures of chick embryo fibroblasts. In: G. E. Wolstenholme, and J. Knight (Eds.),Growth Control in Cell Cultures. Churchill-Livingstone, London, pp. 127–144.

    Chapter  Google Scholar 

  28. Stoker, M., C. O'Neill, S. Berryman, and V. Waxman. 1968. Anchorage and growth regulation in normal and virus-transformed cells. Int. J. Cancer 3: 683–693.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was supported financially by the Swedish Cancer Society and the Swedish Natural Science Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlsson, J. Physical and nutritional factors in gel culture of mammalian cells. In Vitro 14, 860–867 (1978). https://doi.org/10.1007/BF02616156

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02616156

Key words

Navigation