In Vitro

, Volume 14, Issue 3, pp 239–246 | Cite as

Establishment and characterization of a cell line from the american opossum (Didelphys virginiana)

  • H. Koyama
  • C. Goodpasture
  • M. M. Miller
  • R. L. Teplitz
  • A. D. Riggs


A permanent tissue-cultured cell line (designated OK) has been established from kidney tissue of an adult American opossum. The OK line has been characterized with respect to morphology, chromosome constitution, tissue-culture requirements, and attainable mitotic arrest. The cells are epithelial-like with a stable nondiploid chromosomal modal number of 23. Cells grown in Eagle's minimal essential medium with 10% fetal bovine serum have a mean doubling time of 18 hr. The cell line OK is potentially useful for the isolation and purification of the mammalian X chromosome because of the size differential between the smaller X's and the larger autosomes.

Key words

Didelphys virginiana opossum cell line X chromosome 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stubblefield, E., and W. Wray. 1973. Biochemical and morphological studies of partially purified Chinese hamster chromosomes. Cold Spring Harbor Symp. Quant. Biol. 38: 835–843.Google Scholar
  2. 2.
    Hanson, C. B. 1975. Techniques in the isolation and fractionation of eukaryotic chromosomes. In: H. R. Pain, and B. J. Smith (Eds.),New Techniques in Biophysics and Cell Biology. Vol. 2. John Wiley & Sons, London.Google Scholar
  3. 3.
    Riggs, A. D. 1975. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14: 9–25.PubMedGoogle Scholar
  4. 4.
    Deavan, L. L., E. Stubblefield, and J. H. Jett. 1976. Karyotype analysis of Chinese hamster chromosomes by flow microfluorometry. In: M. L. Mendelsohn (Ed.),Automation of Cytogenetics. Asilomar Workshop sponsored by the Energy Research and Development Administration. National Technical Information, U.S. Dept. of Commerce, Springfield, Virginia.Google Scholar
  5. 5.
    Thrasher, J. D. 1972. Marsupial cells in vivo and in vitro. Methods Cell Physiol. 5: 127–166.CrossRefGoogle Scholar
  6. 6.
    Sinha, A. K., S. Kakati, and S. Pathak. 1972. Exclusive localization of C-bands within opossum sex chromosomes. Exp. Cell Res. 75: 265–267.PubMedCrossRefGoogle Scholar
  7. 7.
    Sinha, A. D., S. Kakati, and S. Pathak. 1968. Opossum lymphocytes in vitro: a valuable tool for cytogenetic investigations. Cytogenetics 7: 1–7.Google Scholar
  8. 8.
    Sinha, A. K., and S. Kakati. 1976. C- and G-bands of the opossum chromosomes: Terminal sequences of DNA replication. Can. J. Genet. Cytol. 18: 195–205.PubMedGoogle Scholar
  9. 9.
    Brown, S., M. Teplitz, and Jean-Paul Revel. 1974. Interaction of mycoplasmas with cell cultures, as visualized by electron microscopy. Proc. Nat. Acad. Sci. U.S.A. 71: 464–468.CrossRefGoogle Scholar
  10. 10.
    Chen, T. R. 1975. A simple, rapid procurement to detect mycoplasma contamination in cell cultures. Mamm. Chromosome Newslett. 16: 136–144.Google Scholar
  11. 11.
    Karnovsky, M. J. 1965. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy (abstr.). J. Cell Biol. 27: 137.Google Scholar
  12. 12.
    Farquhar, M., and G. E. Palade. 1965. Cell functions in amphibian skin. J. Cell Biol. 26: 263–291.PubMedCrossRefGoogle Scholar
  13. 13.
    Reynolds, G. S. 1963. The use of led citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17: 208–212.PubMedCrossRefGoogle Scholar
  14. 14.
    Hsu, T. C. 1973. Constitutive heterochromatin (C-band) technique. In: T. Casperson, and L. Zech (Eds.),Chromosome Identification: Techniques and Applications in Biology and Medicine. Nobel Symposium 23. Academic Press, New York.Google Scholar
  15. 15.
    Porter, K., D. Prescott, and J. Frye. 1973. Changes in surface morphology of Chinese hamster ovary cells during the cell cycle. J. Cell Biol. 57: 815–836.PubMedCrossRefGoogle Scholar
  16. 16.
    Hayflick, L., and P. S. Moorhead. 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25: 585–621.CrossRefGoogle Scholar
  17. 17.
    Stubblefield, E., and R. R. Klevecz. 1965. Synchronization of Chinese hamster cells by reversal of Colcemid inhibition. Exp. Cell Res. 40: 660–664.PubMedCrossRefGoogle Scholar
  18. 18.
    Tobey, R. A., E. C. Anderson, and D. F. Petersen. 1967. Properties of mitotic cells prepared by mechanically shaking monolayer cultures of Chinese hamster cells. J. Cell. Physiol. 70: 63–68.PubMedCrossRefGoogle Scholar
  19. 19.
    Allenspach, A. L., and L. E. Roth. 1967. Structural variations during mitosis in the chick embryo. J. Cell Biol. 133: 179–196.CrossRefGoogle Scholar
  20. 20.
    Buck, R. C., and A. Krishan. 1965. Sites of membrane growth during cleavage of amphibian epithelial cells. Exp. Cell Res. 38: 426–428.PubMedCrossRefGoogle Scholar
  21. 21.
    Hsu, T. C., D. Billen, and A. Levan. 1961. Mammalian chromosomes in vitro. XV. Patterns of transformation. J. Nat. Cancer Inst. 27: 515–541.PubMedGoogle Scholar
  22. 22.
    Moore, R., and J. Uren. 1966. Permanent cell lines of the marsupial mouseAutechinus swainsonii. Exp. Cell Res. 44: 273–282.PubMedCrossRefGoogle Scholar
  23. 23.
    Schneider, L. K., and W. O. Rieke. 1967. DNA replication patterns and chromosomal protein synthesis in opossum lymphocytes in vitro. J. Cell Biol. 33: 497–509.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Association 1978

Authors and Affiliations

  • H. Koyama
    • 1
  • C. Goodpasture
    • 1
  • M. M. Miller
    • 1
  • R. L. Teplitz
    • 1
  • A. D. Riggs
    • 1
  1. 1.Department of Biology and Department of Cytogenetics and CytologyCity of Hope National Medical CenterDuarte

Personalised recommendations