Skip to main content
Log in

Receptors for polypeptide hormones: Direct studies of insulin binding to purified liver plasma membranes

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

This presentation is confined to a discussion of the binding of insulin to specific insulin receptors on isolated preparations of purified plasma membranes from rodent livers. The system has been studied extensively and has yielded a large amount of quantitative data. This study was a collaborative effort between my laboratory and the Section on Diabetes of the National Institute of Arthritis, Metabolic, and Digestive Diseases. The studies were begun by Pierre Freychet, Jesse Roth, and myself. The work on the obese mouse was initiated by Ronald Kahn and has been continued recently with Andrew Soll.

When these experiments were begun, we hoped that, by using highly purified plasma membranes and a biologically active labeled hormone, [125I]-monoiodoinsulin, we could accurately quantitative receptor binding isotherms, or receptor concentration and affinity, to such a degree that we could determine whether receptors were involved in the pathophysiology of insulin-resistant states.

As the work progressed, and we realized that such quantitation was possible, we began to think of the insulin and insulin-receptor interaction as a general model for the interaction of a message from the external environment and a cell surface, which creates a change in cell behavior. Because the plasma membrane separates the external environment of a cell from the internal environment, there seemed to be good reason to believe that plasma membranes would be highly specialized for receiving many diverse types of messages.

The most important finding of this work, if we may generalize from the insulin receptor, is that the specialization of the plasma membrane for receiving messages from the external environment involves control mechanisms which can alter the concentration of plasma membrane receptor. The response of a cell to an external message is therefore not uniquely determined by the concentration of the message, but also by the concentration of the receptor which, in the case of the insulin receptor, can be varied by metabolic and hormonal factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levine, R., M. S. Goldstein, B. Huddlestun, and S. P. Klein. 1950. Action of insulin on the “permeability” of cells to free hexoses, as studied by its effect on the distribution of galactose. Am. J. Physiol. 163: 70–76.

    PubMed  CAS  Google Scholar 

  2. Stadie, W. C., N. Haugaard, J. B. Marsh, and A. G. Hills. 1949. The chemical combination of insulin with muscle (diaphragm) of normal rat. Amer. J. Med. Sci. 218: 265–274.

    Article  CAS  PubMed  Google Scholar 

  3. Stadie, W. C., N. Haugaard, and M. Vaughan. 1952. Studies of insulin binding with isotopically labeled insulin. J. Biol. Chem. 199: 729–739.

    PubMed  CAS  Google Scholar 

  4. Lefkowitz, R. J., I. Pastan, and J. Roth. 1969. In: T. W. Rall, M. Rodbell, and P. Condliffe (Eds.),The Role of Adenyl Cyclase and Cyclic 3′,5′-AMP in Biological Systems. NIH Forgarty International Center Proceedings No. 4. National Institutes of Health, Bethesda, pp. 88–95.

    Google Scholar 

  5. Goodfriend, T., and S.-Y. Lin. 1969. Angiotensin receptors. Clin. Res. 17: 243.

    Google Scholar 

  6. Roth, J.. 1973. Peptide hormone binding to receptors: a review of direct studies in vitro. Metabolism 22: 1059–1073.

    Article  PubMed  CAS  Google Scholar 

  7. Neville, D. M., Jr. 1960. The isolation of a cell membrane fraction from rat liver. Biophys. Biochem. Cytol. 8: 413–422.

    Article  Google Scholar 

  8. Neville, D. M., Jr. 1968. Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim. Biophys. Acta 154: 540–552.

    PubMed  CAS  Google Scholar 

  9. Freychet, P., J. Roth, and D. M. Neville, Jr. 1971. Monoiodoinsulin: demonstration of its biological activity and binding to fat cells and liver membranes. Biochem. Biophys. Res. Commun. 43: 400–408.

    Article  PubMed  CAS  Google Scholar 

  10. Freychet, P., R. Kahn, J. Roth, and D. M. Neville, Jr. 1972. Insulin interactions with liver plasma membranes. J. Biol. Chem. 247: 3953–3961.

    PubMed  CAS  Google Scholar 

  11. Kahn, C. R., P. Freychet, D. M. Neville, Jr., and J. Roth. 1974. Quantitative aspects of the insulin receptor interaction in liver plasma membranes. J. Biol. Chem. 249: 2249–2257.

    PubMed  CAS  Google Scholar 

  12. Freychet, P., J. Roth, and D. M. Neville, Jr. 1971. Insulin receptors in the liver: specific binding of [125I]insulin to the plasma membrane and its relation to insulin bioactivity. Proc. Nat. Acad. Sci. U.S.A. 68: 1833–1837.

    Article  CAS  Google Scholar 

  13. Neville, D. M., Jr., and C. R. Kahn. 1974. Isolation of plasma membranes for cell surface membrane receptor studies. In: A. I. Laskin and J. A. Last (Eds.)Methods in Molecular Biology, Vol. 4, Subcellular Particles, Structures and Organelles. Marcel Dekker, Inc., New York, pp. 57–88.

    Google Scholar 

  14. Kahn, C. R., and D. M. Neville, Jr. Unpublished data.

  15. Langley, J. N. 1905. On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the action of striated muscle to nicotine and to curari. J. Physiol. (London) 33: 374–413.

    Google Scholar 

  16. Glossmann, H., and D. M. Neville, Jr. 1972. Phlorizin receptors in isolated kidney brush border membranes. J. Biol. Chem. 247: 7779–7789.

    PubMed  CAS  Google Scholar 

  17. Scatchard, G. 1949. The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51: 660–662.

    Article  CAS  Google Scholar 

  18. DeMeyts, P., J. Roth, D. M. Neville, Jr., J. R. Gavin, III, and M. Lesniak. 1973. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem. Biophys. Res. Commun. 55: 154–161.

    Article  CAS  Google Scholar 

  19. Kahn, C. R., D. M. Neville, Jr., P. Gorden, P. Freychet, and J. Roth. 1972. Insulin receptor defect in insulin resistance: studies in the obese-hyperglycemic mouse. Biochem. Biophys. Res. Commun. 48: 135–142.

    Article  PubMed  CAS  Google Scholar 

  20. Kahn, C. R., D. M. Neville, Jr., and J. Roth. 1973. Insulin-receptor interaction in the obese-hyperglycemic mouse. J. Biol. Chem. 248: 244–250.

    PubMed  CAS  Google Scholar 

  21. Stauffacher, W., L. Orci, D. P., Cameron, I. M. Burr, and A. E. Renold. 1971. Spontaneous hyperglycemia and/or obesity in laboratory rodents: an example of the models with both genetic and environmental components. Recent Progr. Hormone Res. 27: 41–95.

    PubMed  CAS  Google Scholar 

  22. Neville, D. M., Jr., C. R. Kahn, A. Soll, and J. Roth. 1974. Plasma membrane insulin receptor defect in obese mice. In:Protides of the Biological Fluids, XXI Colloquium, May 1973. Pergamon Press Ltd., Oxford, pp. 269–273.

    Google Scholar 

  23. Goldfine, I. D., C. R. Kahn, D. M. Neville, Jr., J. Roth, M. M. Garrison, and R. W. Bates. 1973. Decreased binding of insulin to its receptors in rats with hormone induced insulin resistance. Biochem. Biophys. Res. Commun. 53: 852–857.

    Article  PubMed  CAS  Google Scholar 

  24. Soll, A. H., I. D. Goldfine, J. Roth, C. R. Kahn, and D. M. Neville, Jr. 1974. Thymic lymphocytes in obese (ob/ob) mice: A mirror of the insulin receptor defect in liver and fat. J. Biol. Chem., in press.

  25. Freychet, P., M. H. Laudat, P. Laudat, G. Rosselin, C. R. Kahn, P. Gorden, and J. Roth. 1972. Impairment of insulin binding to to fat cell plasma membrane in the obese hyperglycemic mouse. Fed. Eur. Biochem. Soc. Lett. 25: 339–342.

    CAS  Google Scholar 

  26. Archer, J. A., P. Gorden, J. R. Gavin, III, M. A. Lesniak, and J. Roth. 1973. Insulin receptors in human circulating lymphocytes: application to the study of insulin resistance in man. J. Clin. Endocr. 36: 627–633.

    PubMed  CAS  Google Scholar 

  27. Archer, J. A., P. Gorden, C. R. Kahn, J. R. Gavin, III, D. M. Neville, Jr., M. M. Martin, and J. Roth. 1973. Insulin receptor deficiency states in man: two clinical forms. J. Clin. Invest. 52: 4a.

    Google Scholar 

  28. Marinetti, G. V., L. Schlatz, and K. Reilly. 1972. Hormone-membrane interactions. In: I. B. Fritz (Ed.)Insulin Action. Academic Press, New York, pp. 207–276.

    Google Scholar 

  29. York, D. A., and G. A. Bray. 1972. Dependence of hypothalamic obesity on insulin, the pituitary and the adrenal gland. Endocrinology 90: 885–894.

    Article  PubMed  CAS  Google Scholar 

  30. Gavin, J. R., III, J. Roth, D. M. Neville, Jr., P. DeMeyts, and D. N. Buell. 1974. Insulin dependent regulation of insulin receptor concentrations: a demonstration in vitro. Proc. Nat. Acad. Sci. U.S.A. 71: 84–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neville, D.M. Receptors for polypeptide hormones: Direct studies of insulin binding to purified liver plasma membranes. In Vitro 9, 445–454 (1974). https://doi.org/10.1007/BF02615997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02615997

Keywords

Navigation