Skip to main content
Log in

A cone programming approach to the bilinear matrix inequality problem and its geometry

  • Published:
Mathematical Programming Submit manuscript

Abstract

We discuss an approach for solving the Bilinear Matrix Inequality (BMI) based on its connections with certain problems defined over matrix cones. These problems are, among others, the cone generalization of the linear programming (LP) and the linear complementarity problem (LCP) (referred to as the Cone-LP and the Cone-LCP, respectively). Specifically, we show that solving a given BMI is equivalent to examining the solution set of a suitably constructed Cone-LP or Cone-LCP. This approach facilitates our understanding of the geometry of the BMI and opens up new avenues for the development of the computational procedures for its solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Alizadeh, Interior point methods in semi-definite programming with applications to combinatorial optimization,SIAM Journal of Optimization 5 (1) (1995) 13–51.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Berman,Cones, Matrices, and Mathematical Programming (Springer, Berlin, 1973).

    MATH  Google Scholar 

  3. S.P. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan,Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, PA, 1994).

    MATH  Google Scholar 

  4. R.W. Cottle, J.S. Pang and R.E. Stone,The Linear Complementarity Problem (Academic Press, Boston, MA, 1992).

    MATH  Google Scholar 

  5. K.C. Goh, M.G. Safonov and G.P. Papavassilopoulos, A global optimization approach for the BMI problem, in:Proceedings of the IEEE Conference on Decision and Control, Lake Buena Vista, FL, 1994.

  6. M.S. Gowda, Complementary problems over locally compact cones,SIAM Journal of Control and Optimization 27 (4) (1989) 836–841.

    Article  MATH  MathSciNet  Google Scholar 

  7. M.S. Gowda and T.I. Seidman, Generalized linear complementarity problems,Mathematical Programming 46 (1990) 329–340.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Hall Jr.,Combinatorial Theory (Blaisdell Publishing Company, Waltham, MA, 1967).

    MATH  Google Scholar 

  9. R.A. Horn and C.R. Johnson,Matrix Analysis (Cambridge University Press, Cambridge, MA, 1985).

    MATH  Google Scholar 

  10. R.A. Horn and C.R. Johnson,Topics in Matrix Analysis (Cambridge University Press, Cambridge, MA, 1991).

    MATH  Google Scholar 

  11. G. Isac,Complementarity Problems (Springer, Berlin, 1992).

    Book  MATH  Google Scholar 

  12. M. Kojima, M. Shida and S. Shindoh, Reduction of linear complementarity problems over cones to linear programming over cones, Technical Report, Department of Information Science, Tokyo Institute of Technology, Japan, 1995.

  13. M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone linear complementarity problem in symmetric matrices, Technical Report, Department of Information Science, Tokyo Institute of Technology, Japan, 1994.

  14. M.G. Krein and M.A. Rutman, Linear operators leaving invariant a cone in a Banach space,American Mathematical Society Translations 1 (10) (1956) 199–325.

    Google Scholar 

  15. M. Mesbahi and G.P. Papavassilopoulos, On the rank minimization problem over a positive semidefinite linear matrix inequality,IEEE Transactions on Automatic Control 42 (2) (1997) 239–243.

    Article  MATH  MathSciNet  Google Scholar 

  16. K.G. Murty and S.N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming,Mathematical Programming 39 (1987) 117–129.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Nesterov and A. Nemirovskii,Interior-Point Polynomial Algorithms in Convex Programming (SIAM, Philadelphia, PA, 1994).

    MATH  Google Scholar 

  18. R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  19. M.G. Safonov, K.C. Goh and J.H. Ly, Control system synthesis via bilinear matrix inequalities, in:Proceedings of the 1994 American Control Conference, Baltimore, MD, 1994.

  20. M.G. Safonov and G.P. Papavassilopoulos, The diameter of an intersection of ellipsoids and BMI robust synthesis, in:IFAC Symposium on Robust Control, Rio de Janeiro, Brazil, 1994.

  21. J. Stoer and C. Witzgall,Convexity and Optimization in Finite Dimension (Springer, Berlin, 1970).

    Google Scholar 

  22. O. Toker and H. Özbay, On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback, in:Proceedings of the 1995 American Control Conference, Seattle, Washington, 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Mesbahi.

Additional information

Research supported in part by the National Science Foundation under Grant CCR-9222734.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesbahi, M., Papavassilopoulos, G.P. A cone programming approach to the bilinear matrix inequality problem and its geometry. Mathematical Programming 77, 247–272 (1997). https://doi.org/10.1007/BF02614437

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614437

Keywords

Navigation