Skip to main content
Log in

Potential-reduction methods in mathematical programming

  • Published:
Mathematical Programming Submit manuscript

Abstract

We provide a survey of interior-point methods for linear programming and its extensions that are based on reducing a suitable potential function at each iteration. We give a fairly complete overview of potential-reduction methods for linear programming, focusing on the possibility of taking long steps and the properties of the barrier function that are necessary for the analysis. We then describe briefly how the methods and results can be extended to certain convex programming problems, following the approach of Nesterov and Todd. We conclude with some open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. Anstreicher, “A monotonic projective algorithm for fractional linear programming,”Algorithmica 1 (1986) 483–498.

    Article  MATH  MathSciNet  Google Scholar 

  2. K.M. Anstreicher, “A combined phase I-phase II projective algorithm for linear programming,”Mathematical Programming 43 (1989) 209–223.

    Article  MATH  MathSciNet  Google Scholar 

  3. K.M. Anstreicher, “A combined phase I-phase II scaled potential algorithm for linear programming.”Mathematical Programming 52 (1991) 429–439.

    Article  MATH  MathSciNet  Google Scholar 

  4. K.M. Anstreicher, “On the performance of Karmarkar’s algorithm over a sequence of iterations,”SIAM Journal on Optimization 1 (1991) 22–29.

    Article  MATH  MathSciNet  Google Scholar 

  5. K.M. Anstreicher, “On interior algorithms for linear programming with no regularity assumptions,”Operations Research Letters 11 (1992) 209–212.

    Article  MATH  MathSciNet  Google Scholar 

  6. D.A. Bayer and J.C. Lagarias, “Karmarkar’s linear programming algorithm and Newton’s method,”Mathematical Programming 50 (1991) 291–330.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Bertsimas and X. Luo, “On the worst case complexity of potential reduction algorithms for linear programming,” Working Paper 3558-93. Sloan School of Management, MIT, Cambridge, MA 02139, USA (1993).

    Google Scholar 

  8. R.A. Bosch and K.M. Anstreicher, “On partial updating in a potential reduction linear programming algorithm of Kojima, Mizuno and Yoshise,”Algorithmica 9 (1993) 184–197.

    Article  MATH  MathSciNet  Google Scholar 

  9. R.W. Cottle, J.-S. Pang, and R.E. Stone,The Linear Complementarity Problem (Academic Press, Boston, MA, 1992).

    MATH  Google Scholar 

  10. R.M. Freund, “Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function,”Mathematical Programming 51 (1991) 203–222.

    Article  MATH  MathSciNet  Google Scholar 

  11. R.M. Freund, “A potential-function reduction algorithm for solving a linear program directly from an infeasible ‘warm start’,”Mathematical Programming 52 (1991) 441–466.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. de Ghellinck and J.P. Vial, “A polynomial Newton method for linear programming,”Algorithmica 1 (1986) 425–453.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Goldfarb and M.J. Todd, “Linear Programming,” in: G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd, eds.,Optimization, Handbooks in Operations Research and Management Science. itVol. 1 (North-Holland, Amsterdam, 1989) pp. 141–170.

    Google Scholar 

  14. C.C. Gonzaga, “Polynomial affine algorithms for linear programming,”Mathematical Programming 49 (1990) 7–21.

    Article  MATH  MathSciNet  Google Scholar 

  15. C.C. Gonzaga, “Large steps path-following methods for linear programming, Part II: Potential reduction method,”SIAM Journal on Optimization 1 (1991) 280–292.

    Article  MATH  MathSciNet  Google Scholar 

  16. C.C. Gonzaga, “Path following methods for linear programming,”SIAM Review 34 (1992) 167–227.

    Article  MATH  MathSciNet  Google Scholar 

  17. O. Güler, “Barrier functions in interior-point methods,” Department of Mathematics and Statistics, University of Maryland Baltimore County. Baltimore, MD (1994) to appear in:Mathematics of Operation Research.

    Google Scholar 

  18. H. Imai, “On the convexity of the multiplicative version of Karmarkar’s potential function,”Mathematical Programming 40 (1988) 29–32.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Ji and Y. Ye, “A complexity analysis for interior-point algorithms based on Karmarkar’s potential function,”SIAM Journal on Optimization 4 (1994) 512–520.

    Article  MATH  MathSciNet  Google Scholar 

  20. N.K. Karmarkar, “A new polynomial-time algorithm for linear programming,”Combinatorica 4 (1984) 373–395.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Kojima, N. Megiddo and Y. Ye, “An interior point potential reduction algorithm for the linear complementarity problem,”Mathematical Programming 54 (1992) 267–279.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Kojima, S. Mizuno and A. Yoshise, “An\(O(\sqrt n L)\) iteration potential reduction algorithm for linear complementarity problems,”Mathematical Programming 50 (1991) 331–342.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Kranich, “Interior point methods for mathematical programming: A bibliography,” available through NETLIB: send e-mail to netlib@research.att.com containing the message “send intbib.bib from bib” and/or “send intbib.bbl from bib.”

  24. I.J. Lustig, R.E. Marsten, and D.F. Shanno, “Interior point methods: Computational state of the art,”ORSA Journal on Computing 6 (1994) 1–14.

    MATH  MathSciNet  Google Scholar 

  25. K.A. McShane, “Superlinearly convergent\(O(\sqrt n L)\)-iteration interior-point algorithms for linear programming and the monotone linear complementarity problem,”SIAM Journal on Optimization 4 (1994) 247–261.

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Mizuno, “O(n ρ L) iteration O(n 3 L) potential reduction algorithms for linear programming,”Linear Algebra and its Applications 152 (1991) 155–168.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Mizuno, M. Kojima and M.J. Todd, “Infeasible-interior-point primal dual potential-reduction algorithms for linear programming,”SIAM Journal on Optimization 5 (1995) 52–67.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Mizuno and A. Nagasawa, “A primal-dual affine scaling potential reduction algorithm for linear programming,”Mathematical Programming 62 (1993) 119–131.

    Article  MathSciNet  Google Scholar 

  29. R.D.C. Monteiro, “Convergence and boundary behavior of the projective scaling trajectories for linear programming,” in J.C. Lagarias and M.J. Todd, eds.,Mathematical Developments Arising from Linear Programming: Proceedings of a Joint Summer Research Conference held at Bowdoin College, Brunswick, Maine, USA, June/July 1988, Vol. 114 ofContemporary Mathematics (American Mathematical Society, Providence, RI, 1990) pp. 213–229.

    Google Scholar 

  30. R.D.C. Monteiro and S.J. Wright, “Superlinear primal-dual affine scaling algorithms for LCP,”Mathematical Programming 69 (1995) 311–333.

    MathSciNet  Google Scholar 

  31. J.L. Nazarcth, “Quadratic and conic approximating models in linear programming,”Mathematical Programming Society COAL Bulletin 23 (1994).

  32. Yu.E. Nesterov, “Long-step strategies in interior point potential-reduction methods,” Department SES COMIN, Geneva University, Switzerland (1993).

    Google Scholar 

  33. Yu.E. Nesterov and A.S. Nemirovskii,Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms (SIAM, Philadelphia, PA, 1993).

    Google Scholar 

  34. Yu.E. Nesterov and M.J. Todd, “Self-scaled barriers and interior-point methods for convex programming,” Technical Report No. 1091. School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853–3801 (1994) to appear in:Mathematics of Operations Research.

    Google Scholar 

  35. Yu.E. Nesterov and M.J. Todd, “Primal-dual interior-point methods for self-scaled cones,” Technical Report No. 1125, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853–3801 (1995).

    Google Scholar 

  36. M.J.D. Powell, “On the number of iterations of Karmarkar’s algorithm for linear programming,”Mathematical Programming 62 (1993) 153–197.

    Article  MathSciNet  Google Scholar 

  37. K. Tanabe, “Centered Newton method for mathematical programming,” in M. Iri and K. Yajima, eds.,System Modelling and Optimization: Proceedings of the 13th IFIP Conference, Tokyo, Japan. Aug/Sept. 1987, Vol. 113 ofLecture Notes in Control and Information Sciences (Springer-Verlag, Berlin, 1988) pp. 197–206.

    Google Scholar 

  38. M.J. Todd, “On Anstreicher’s combined phase I-phase II projective algorithm for linear programming,”Mathematical Programming 55 (1992) 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  39. M.J. Todd, “Combining phase I and phase II in a potential reduction algorithm for linear programming,”Mathematical Programming 59 (1993) 133–150.

    Article  MathSciNet  Google Scholar 

  40. M.J. Todd and B.P. Burrell, “An extension of Karmarkar’s algorithm for linear programming using dual variables,”Algorithmica 1 (1986) 409–424.

    Article  MATH  MathSciNet  Google Scholar 

  41. M.J. Todd and Y. Ye, “A centered projective algorithm for linear programming,”Mathematics of Operations Research 15 (1990) 508–529.

    MATH  MathSciNet  Google Scholar 

  42. M.J. Todd and Y. Ye, “Approximate Farkas lemmas and stopping rules for iterative infeasible-point algorithms for linear programming,” Technical Report No. 1109, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853–3801 (1994).

    Google Scholar 

  43. L. Tunçel, “Constant potential primal dual algorithms: A framework,”Mathematical Programming 66 (1994) 145–159.

    Article  MathSciNet  Google Scholar 

  44. R.H. Tütüncü, “A practical infeasible-interior-point potential-reduction algorithm for linear programming,” Technical Report No. 1136, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853–3801 (1995).

    Google Scholar 

  45. L. Vandenberghe and S. Boyd, “Semidefinite programming,”SIAM Review 38 (1996) 49–95.

    Article  MATH  MathSciNet  Google Scholar 

  46. Y. Ye, “An O(n 3 L) potential reduction algorithm for linear programming,”Mathematical Programming 50 (1991) 239–258.

    Article  MATH  MathSciNet  Google Scholar 

  47. Y. Ye, “A potential reduction algorithm allowing column generation,”SIAM Journal on Optimization 2 (1992) 7–20.

    Article  MATH  MathSciNet  Google Scholar 

  48. Y. Ye, K.O. Kortanek, J.A. Kaliski, and S. Huang, “Near-boundary behavior of primal-dual potential reduction algorithms for linear programming,”Mathematical Programming 58 (1993) 243–255.

    Article  MATH  MathSciNet  Google Scholar 

  49. Y. Ye, M.J. Todd, and S. Mizuno, “An\(O(\sqrt n L)\)-iteration homogencous and self-dual linear programming algorithm,”Mathematics of Operations Research 19 (1994) 53–67.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by NSF, AFOSR and ONR through NSF Grant DMS-8920550. Some of this work was done while the author was on a sabbatical leave from Cornell University visiting the Department of Mathematics at the University of Washington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, M.J. Potential-reduction methods in mathematical programming. Mathematical Programming 76, 3–45 (1997). https://doi.org/10.1007/BF02614377

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614377

Keywords

Navigation