Skip to main content
Log in

Criss-cross methods: A fresh view on pivot algorithms

  • Published:
Mathematical Programming Submit manuscript

Abstract

Criss-cross methods are pivot algorithms that solve linear programming problems in one phase starting with any basic solution. The first finite criss-cross method was invented by Chang, Terlaky and Wang independently. Unlike the simplex method that follows a monotonic edge path on the feasible region, the trace of a criss-cross method is neither monotonic (with respect to the objective function) nor feasibility preserving. The main purpose of this paper is to present mathematical ideas and proof techniques behind finite criss-cross pivot methods. A recent result on the existence of a short admissible pivot path to an optimal basis is given, indicating shortest pivot paths from any basis might be indeed short for criss-cross type algorithms. The origins and the history of criss-cross methods are also touched upon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Adler and N. Megiddo, A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension,Journal of the Association of Computing Machinery 32 (1985) 891–895.

    MathSciNet  Google Scholar 

  2. D. Avis and V. Chvátal, Notes on Bland’s rule,Mathematical Programming Study 8 (1978) 24–34.

    Google Scholar 

  3. D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra,Discrete and Computational Geometry 8 (1992) 295–313.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Beasley, ed.,Advances in Linear and Integer Programming (Oxford University Press, Oxford, UK, 1996).

    MATH  Google Scholar 

  5. R.E. Bixby, The simplex method: It keeps getting better, Lecture at the 14th International Symposium on Mathematical Programming, Amsterdam, The Netherlands, 1991.

  6. A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler,Oriented Matroids (Cambridge University Press, Cambridge, MA, 1993).

    MATH  Google Scholar 

  7. R.G. Bland, New finite pivoting rules for the simplex method,Mathematics of Operations Research 2 (1977) 103–107.

    MATH  MathSciNet  Google Scholar 

  8. R.G. Bland, A combinatorial abstraction of linear programming,Journal of Combinatorial Theory, Series B 23 (1977) 33–57.

    Article  MATH  MathSciNet  Google Scholar 

  9. R.G. Bland and M. Las Vergnas, Orientability of matroids,Journal of Combinatorial Theory, Series B 24 (1978) 94–123.

    Article  MATH  MathSciNet  Google Scholar 

  10. K.H. Borgwardt,The Simplex Method: A Probabilistic Analysis, Algorithms and Combinatorics, Vol. 1 (Springer, Berlin, 1987).

    Google Scholar 

  11. K. Cameron and J. Edmonds, Existentially polytime theorems, in:Proceedings of the DIMACS Workshop in Polyhedral Combinatorics, 1993.

  12. Y.Y. Chang, Least index resolution of degeneracy in linear complementarity problems, Technical Report 79-14, Department of Operations Research, Stanford University, Stanford, CA, 1979.

    Google Scholar 

  13. A. Charnes, Optimality and degeneracy in linear programming,Econometrica 20 (1952) 160–170.

    Article  MATH  MathSciNet  Google Scholar 

  14. H.-D. Chen, P.M. Pardalos and M.A. Saunders, The simplex algorithm with a new primal and dual pivot rule,Operations Research Letters 16 (1994) 121–127.

    Article  MATH  MathSciNet  Google Scholar 

  15. V. Chvátal,Linear Programming (W.H. Freeman and Company, San Francisco, 1983).

    MATH  Google Scholar 

  16. J. Clausen, A note on Edmonds-Fukuda pivoting rule for the simplex method,European Journal of Operations Research 29 (1987) 378–383.

    Article  MATH  MathSciNet  Google Scholar 

  17. R.W. Cottle, Symmetric dual quadratic programs,Quarterly of Applied Mathematics 21 (1963) 237–243.

    MATH  MathSciNet  Google Scholar 

  18. R.W. Cottle and G.B. Dantzig, Complementary pivot theory of mathematical programming,Linear Algebra and Its Applications 1 (1968) 103–125.

    Article  MATH  MathSciNet  Google Scholar 

  19. R.W. Cottle, J.-S. Pang and V. Venkateswaran, Sufficient matrices and the linear complementarity problem.Linear Algebra and Its Applications 114/115 (1987) 235–249.

    Google Scholar 

  20. R.W. Cottle, J.-S. Pang and R.E. Stone,The Linear Complementarity Problem (Academic Press, New York, 1992).

    MATH  Google Scholar 

  21. G.B. Dantzig, Programming in a linear structure,Comptroller, USAF Washington, DC (February 1948).

  22. G.B. Dantzig,Linear Programming and Extensions (Princeton University Press, Princeton, NJ, 1963).

    MATH  Google Scholar 

  23. G.B. Dantzig, Linear programming: The story about how it began, in: A.H.G. Rinnoy Kan, L.K. Lenstra and A. Schrijver, eds.,History of Mathematical Programming (CWI, North-Holland, Amsterdam, 1991). 19–31.

    Google Scholar 

  24. G.B. Dantzig, A. Orden and P. Wolfe, The generalized simplex method for minimizing a linear form under linear inequality restraints,Pacific Journal of Mathematics 5 (1955) 183–195.

    MATH  MathSciNet  Google Scholar 

  25. J. Edmonds, Exact pivoting, Presentation, ECCO VII, 1994.

  26. J. Edmonds, A Helly method for linear programming, presentation, CO94, Amsterdam, 1994.

  27. J. Edmonds and K. Fukuda, NP easy and LP theory, Cours postgrade en Recherche Opérationnelle, École Polytechnique Fédérale de Lausanne, Lausanne, 1994.

  28. J. Folkman and J. Lawrence, Oriented matroids,Journal of Combinatorial Theory, Series B 25 (1978) 199–236.

    Article  MATH  MathSciNet  Google Scholar 

  29. K. Fukuda, Oriented matroid programming, Ph.D. Thesis, Waterloo University, Waterloo, Ontario, Canada, 1982.

    Google Scholar 

  30. K. Fukuda, H.-J. Lüthi and M. Namiki, The existence of a short sequence of admissible pivots to an optimal basis in LP and LCP,ITOR, to appear.

  31. K. Fukuda and H.-J. Lüthi, Combinatorial maximum improvement algorithm for LP and LCP, Presented at Franco-Japanese Days, Brest, France, 1995.

  32. K. Fukuda and T. Matsui, On the finiteness of the criss-cross method,European Journal of Operations Research 52 (1991) 119–124.

    Article  MATH  Google Scholar 

  33. K. Fukuda and M. Namiki, On extremal behaviors of Murty’s least index method,Mathematical Programming 64 (1994) 365–370.

    Article  MathSciNet  Google Scholar 

  34. K. Fukuda and M. Namiki, Finding all common basis in two matroids,Discrete Applied Mathematics 56 (1995) 231–243.

    Article  MATH  MathSciNet  Google Scholar 

  35. K. Fukuda, M. Namiki and A. Tamura, EP theorems and linear complementarity problems, Technical Report, Institute for Operations Research, ETH-Zentrum, CH-8092 Zürich, Switzerland, 1996.

  36. K. Fukuda and T. Terlaky, Linear complementarity and oriented matroids,Journal of the Operational Research Society of Japan 35 (1992) 45–61.

    MATH  MathSciNet  Google Scholar 

  37. D. Goldfarb, Worst case complexity of the shadow vertex simplex algorithm, Technical Report, Department of Industrial Engineering and Operations Research, Columbia University, 1983.

  38. D. Den Hertog, C. Roos and T. Terlaky, The linear complementarity problem, sufficient matrices and the criss-cross method,Linear Algebra and Its Applications 187 (1993) 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  39. T. Illés. Á. Szirmai and T. Terlaky, A finite criss-Cross method for hyperbolic programming, Report No. 96-103, Faculteit der Technische Wiskunde en Informatica, Technische Universiteit Delft, The Netherlands, 1996; also in:European Journal of Operations Research, to appear.

    Google Scholar 

  40. D. Jensen, Coloring and duality: Combinatorial augmentation methods, Ph.D. Thesis, School of OR and IE, Cornell University, Ithaca, NY, 1985.

    Google Scholar 

  41. G. Kalai and D. Kleitman, A quasi-polynomial bound for the diameter of graphs of polyhedra,Bull. Amer. Math. Soc. 26 (1992) 315–316.

    MATH  MathSciNet  Google Scholar 

  42. N. Karmarkar, A new polynomial-time algorithm for linear programming,Combinatorica 4 (1984) 373–395.

    Article  MATH  MathSciNet  Google Scholar 

  43. L.G. Khachian, Polynomial algorithms in linear programming,Zhurnal Vichislitelnoj Matematiki i Matematischeskoi Fiziki 20 (1980) 51–68 (in Russian); English translation in:USSR Computational Mathematics and Mathematical Physics 20 (1980) 53–72.

    Google Scholar 

  44. E. Klafszky and T. Terlaky, Some generalizations of the criss-cross method for quadratic programming,Math. Oper. und Stat. Ser. Optimization 24 (1992) 127–139.

    MATH  MathSciNet  Google Scholar 

  45. E. Klafszky and T. Terlaky, Some generalizations of the criss-cross method for the linear complementarity problem of oriented matroids,Combinatorica 9 (1989) 189–198.

    Article  MATH  MathSciNet  Google Scholar 

  46. V. Klee and G.J. Minty, How good is the simplex algorithm? in: O. Shisha, ed.,Inequalities - III (Academic Press, New York, 1972) 159–175.

    Google Scholar 

  47. V. Klee and P. Kleinschmidt, Thed-step conjecture and its relatives,Mathematics of Operations Research 12 (1987) 718–755.

    MATH  MathSciNet  Google Scholar 

  48. M. Kojima, N. Megiddo, T. Noma and A. Yoshise,A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Lecture Notes in Computer Science Vol. 538 (Springer, Berlin, 1991).

    Google Scholar 

  49. C.E. Lemke and J.T. Howson Jr, Equilibrium points of bimatrix games,SIAM Journal 12 (1964) 413–423.

    MATH  MathSciNet  Google Scholar 

  50. C.E. Lemke, On complementary pivot theory, in: G.B. Dantzig and A.F. Veinott, eds.,Mathematics of Decision Sciences, Part 1 (AMS, Providence, RI, 1968) 95–114.

    Google Scholar 

  51. T.M. Liebling, On the number of iterations of the simplex method, in: R. Henn, H.P. Künzi and H. Schubert, eds.,Methods of Operations Research XVII (Verlag Anton, 1972) 248–264.

  52. I. Lustig, The equivalence of Dantzig’s self-dual parametric algorithm for linear programs to Lemke’s algorithm for linear complementarity problems applied to linear programming, Technical Report SOL 87-4, Department of Operations Research, Stanford University, Stanford, California, 1987.

    Google Scholar 

  53. A. Mandel, Topology of oriented matroids, Ph.D. Thesis, Waterloo University, Waterloo, Ontario, 1982.

    Google Scholar 

  54. W. Morris Jr and M.J. Todd, Symmetry and positive definiteness in oriented matroids, Technical Report No. 631, Cornell University, School of Operations Research and Industrial Engineering, Ithaca, NY, 1984.

    Google Scholar 

  55. K.G. Murty, A note on a Bard type scheme for solving the complementarity problem,Opsearch 11 (2–3) (1974) 123–130.

    MathSciNet  Google Scholar 

  56. K.G. Murty,Linear and Combinatorial Programming (Krieger Publishing Company, Malabar, FL, 1976).

    MATH  Google Scholar 

  57. K.G. Murty, Computational complexity of parametric linear programming,Mathematical Programming 19 (1980) 213–219.

    Article  MATH  MathSciNet  Google Scholar 

  58. M. Namiki and T. Matsui, Some modifications of the criss-cross method, Research Report, Department of Information Sciences, Tokyo Institute of Technology, Tokyo, 1990.

    Google Scholar 

  59. K. Paparrizos, Pivoting rules directing the simplex method through all feasible vertices of Klee-Minty examples,Opsearch 26 (2) (1989) 77–95.

    MATH  MathSciNet  Google Scholar 

  60. C. Roos, An exponential example for Terlaky’s pivoting rule for the criss-cross simplex method,Mathematical Programming 46 (1990) 78–94.

    Article  MathSciNet  Google Scholar 

  61. C. Roos, T. Terlaky and J.-Ph. Vial,Theory and Algorithms for Linear Optimization: An Interior Point Approach (John Wiley & Sons, New York, 1997).

    MATH  Google Scholar 

  62. J.E. Strum,Introduction to Linear Programming (Holden-Day, San Francisco, CA, 1972).

    MATH  Google Scholar 

  63. T. Terlaky, Egy új, véges criss-cross módszer programozási feladatok megoldására,Alkalmazott Matematikai Lapok 10 (1984) 289–296 (in Hungarian, English title: A new, finite criss-cross method for solving linear programming problems).

    MATH  MathSciNet  Google Scholar 

  64. T. Terlaky, A convergent criss-cross method,Math. Oper. und Stat. ser. Optimization 16 (5) (1985) 683–690.

    MATH  MathSciNet  Google Scholar 

  65. T. Terlaky, A finite criss-cross method for oriented matroids,Journal of Combinatorial Theory, Series B 42 (3) (1987) 319–327.

    Article  MATH  MathSciNet  Google Scholar 

  66. T. Terlaky, ed.,Interior Point Methods of Mathematical Programming (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996).

    MATH  Google Scholar 

  67. T. Terlaky and S. Zhang, Pirvot rules for linear programming: A survey on recent theoretical developments,Annals of Operations Research 46 (1993) 203–233.

    Article  MathSciNet  Google Scholar 

  68. M.J. Todd, Complementarity in oriented matroids,SIAM Journal on Algebraic and Discrete Mathematics 5 (1984) 467–485.

    Article  MATH  MathSciNet  Google Scholar 

  69. M.J. Todd, Linear and quadratic programming in oriented matroids,Journal of Combinatorial Theory, Series B 39 (1985) 105–133.

    Article  MATH  MathSciNet  Google Scholar 

  70. M.J. Todd, Polynomial expected behavior of a pivoting algorithm for linear complementarity and linear programming problems,Mathematical Programming 35 (1986) 173–192.

    Article  MATH  MathSciNet  Google Scholar 

  71. A. Tucker, A note on convergence of the Ford-Fulkerson flow algorithm,Mathematics of Operations Research 2 (2) (1977) 143–144.

    MATH  MathSciNet  Google Scholar 

  72. H. Väliaho, A new proof of the finiteness of the criss-cross method,Math. Oper. und Stat. ser. Optimization 25 (1992) 391–400.

    MATH  Google Scholar 

  73. H. Väliaho,P *-matrices are just sufficient,Linear Algebra and Its Applications 239 (1996) 103–108.

    MATH  MathSciNet  Google Scholar 

  74. Zh. Wang, A conformal elimination free algorithm for oriented matroid programming,Chinese Annals of Mathematics 8 (B1) (1987).

  75. Zh. Wang, A modified version of the Edmonds-Fukuda algorithm for LP in the general form,Asia-Pacific Journal of Operations Research 8 (1) (1991).

  76. Zh. Wang, A general deterministic pivot method for oriented matroid programming,Chinese Annals of Mathematics B 13 (2) (1992).

  77. Zh. Wang and T. Terlaky, A general scheme for solving linear complementarity problems in the setting of oriented matroids, in: H.P. Yap, T.H. Ku, E.K. Lloyd and Zh. Wang, eds.,Combinatorics and Graph Theory, Proceedings of the Spring School and International Conference on Combinatorics: SSIC’92, China (World Scientific, Singapore, 1993) 244–255.

    Google Scholar 

  78. S.J. Wright,Primal-Dual Interior Point Methods (SIAM Publications, Philadelphia, PA, 1996).

    Google Scholar 

  79. N. Zadeh, What is the worst case behavior of the simplex algorithm? Technical Report No. 27, Department of Operations Research, Stanford University, Stanford, CA, 1980.

    Google Scholar 

  80. S. Zhang, On anti-cycling pivoting rules for the simplex method,Operations Research Letters 10 (1991) 189–192.

    Article  MATH  MathSciNet  Google Scholar 

  81. S. Zhang, New variants of finite criss-cross pivot algorithms for linear programming, Technical Report, Econometric Institute, Erasmus University Rotterdam, 9707/A, 1997.

  82. S. Zionts, The criss-cross method for solving linear programming problems,Management Science 15 (7) (1969) 426–445.

    Google Scholar 

  83. S. Zionts, Some empirical test of the criss-cross method,Management Science 19 (1972) 406–410.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, K., Terlaky, T. Criss-cross methods: A fresh view on pivot algorithms. Mathematical Programming 79, 369–395 (1997). https://doi.org/10.1007/BF02614325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614325

Keywords

Navigation