Skip to main content
Log in

Thermal model of local ultrasound heating of biological tissue

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

Possibilities of creation of controlled temperature fields in deep-seated biological tissue with the use of an endocavity ultrasound applicator with surface cooling are considered. Mathematical models are proposed and calculated that make it possible to construct acoustic and thermal fields in biotissues depending on the thermophysical and ultrasound characteristics of the medium being irradiated and to reveal situations and effects that are important for solving problems of practical medicine in the field of local ultrasound hyperthermia and thermotherapy of tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gautherie (ed.), Interstitial, Endocavity, and Perfusional Hyperthermia: Methods and Clinical Trials, Berlin (1991).

  2. G. H. Nussbaum (ed.), Physical Aspects of Hyperthermia, (1982).

  3. N. D. Devyatkov, M. B., Golant, and O. V. Betskii, Millimeter Waves and Their Role in Vital Processes [in Russian], Moscow (1991).

  4. S. A. Goss, R. L. Johnson, and F. Dunn, J. Acoust. Soc. Amer.,64, 423–457 (1978).

    Article  Google Scholar 

  5. G. D. Ludwig, J. Acoust. Soc. Amer.,22, 862–866 (1950).

    Article  Google Scholar 

  6. D. E. Goldman and T. F. Hueter, J. Acoust. Soc. Amer.,28, 35–37 (1956).

    Article  Google Scholar 

  7. St. Madersbacher, Ch. Kratzik, and M. Marberger, J. Urology,151, 399A (1994).

    Google Scholar 

  8. E. Ebbini, S. Umemura, M. Ibbini, and C. Cain, IEEE Trans. Ultrason. Ferroelec. Freq. Control,35, 561–572 (1988).

    Article  Google Scholar 

  9. C. J. Diederich and K. Hynynen, IEEE Trans. Biomed. Eng.,36, 432–438 (1989).

    Article  Google Scholar 

  10. K. B. Ocheltree and L. A. Frizzel, IEEE Trans. Ultrason. Ferroelec. Freq. Control,36, 242–248 (1989).

    Article  Google Scholar 

  11. G. B. Gentili, F. Gori, and M. Leoncini, IEEE Trans. Biomed. Eng.,38, 98–103 (1991).

    Article  Google Scholar 

  12. L. Segerlind, Application of the Finite-Element Method [Russian translation] Moscow (1979).

  13. J. Declou, Finite-Element Method [Russian translation], Moscow (1976).

Download references

Authors

Additional information

Kiev Polythechnical Institute, Kiev, Ukraine. Institute of Experimental Pathology, Oncology, and Radiobiology, National Academy of Sciences of Ukraine, Kiev, Ukraine. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 69, No. 5, pp. 779–784, September–October, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedogovor, V.A., Sigal, V.L. & Popsuev, E.I. Thermal model of local ultrasound heating of biological tissue. J Eng Phys Thermophys 69, 596–601 (1996). https://doi.org/10.1007/BF02606175

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02606175

Keywords

Navigation