Skip to main content
Log in

Erythrocyte concentrations and transmembrane fluxes of sodium and potassium in essential hypertension: Role of intrinsic and environmental factors

  • Hypertension
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

The intraerythrocyte sodium concentration is increased in the erythrocytes of Zaïrean Bantu with untreated hypertension, while the red blood cell potassium is not differenent from that of normotensive subjects. Compared with whites, normotensive healthy blacks have a higher intracellular concentration of sodium due to a depressed activity of the sodium-potassium pump. Normotensive healthy males with a positive familial background of hypertension display higher erythrocyte sodium and lower cotransport activity. None of the two measurements offer a clear-cut genetic marker of essential hypertension. In healthy women, the erythrocyte sodium concentration is lowered during the luteal as compared with the follicular phase of the menstrual cycle. This variability explains the difference observed between men and women. A low-sodium diet stimulates the activity of the sodium-potassium ATPase pump, which leads to a decrease in the erythrocyte sodium concentration. Both alterations reverse only slowly during sodium repletion. It is therefore suggested that an adequate matching for race, sex, stage of the menstrual cycle (in women), family history of hypertension, and the amount of sodium in the diet should be a prerequisite for valid conclusions when interpreting the erythrocyte concentration and fluxes of sodium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee C, Dagostino M. Effect of strophantidin on the intracellular Na+ activity and twitch tension of constantly driven canine cardiac Purkinje fibers.Biophys J 1982; 40:185–198.

    PubMed  CAS  Google Scholar 

  2. Akera T, Brody T. Estimating sodium pump activity in beating heart muscle.TIPS 1985;6:156–159.

    CAS  Google Scholar 

  3. Whittaker J, Hawkins M, Swaminathan R. Changes in erythrocyte sodium, sodium transport and3H-ouabain binding capacity during digoxin administration in the pig.Life Sci 1983;32:747–754.

    Article  PubMed  CAS  Google Scholar 

  4. Post RL, Merritt CR, Kinsolving CR, et al. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in human erythrocytes.J Biol Chem 1960;235:1796–1802.

    PubMed  CAS  Google Scholar 

  5. Beutler E, Kuhl W. Guanosine triphosphatase activity in human erythrocyte membrane.Biochem Biophys Acta 1980;601:372–379.

    Article  PubMed  CAS  Google Scholar 

  6. De Luise M, Blackburn GM, Flier JS. Reduced activity of the red cell sodium-potassium pump in human obesity.N Engl J Med 1980;305:1017–1022.

    Article  Google Scholar 

  7. Bernstein JC, Israel Y. Active transport of Rb86 in human red cells and rat brain slices.J Pharmacol Exp Therap 1970;174:323–329.

    CAS  Google Scholar 

  8. Love WD, Burch GE. A comparison of potassium42, ribidium86, cesium134 as tracers of potassium in the study of cation metabolism of human erythrocytes in vitro.J Lab Clin Med 1953;41:351–357.

    PubMed  CAS  Google Scholar 

  9. Sachs JR, Welt LG. The concentration dependence of active potassium transport in the human red blood cell.J Clin Invest 1967;46:65–76.

    PubMed  CAS  Google Scholar 

  10. Cumberbatch M, Morgan DB. Relations between sodium transport and sodium concentration in human erythrocytes in health and disease.Clin Sci 1981;60:555–564.

    PubMed  CAS  Google Scholar 

  11. Hoffman JF, Kregonov FM. The characterization of new energy-dependent cation transport process in red blood cells.Ann NY Acad Sci 1966;137:566–586.

    Article  PubMed  CAS  Google Scholar 

  12. Chipperfield AR. Chloride dependence of frusemide-and phloretin-sensitive sodium and potassium fluxes in human red cells.J Physiol 1981;312:435–444.

    PubMed  CAS  Google Scholar 

  13. Dunham PB, Stewart GW, Ellory JC. Chloride-activated potassium transport in human erythrocytes.Proc Natl Acad Sci USA 1980;77:7711–7715.

    Article  Google Scholar 

  14. Wiley JC, Cooper RA. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.J Clin Invest 1974;53:745–755.

    PubMed  CAS  Google Scholar 

  15. Brand SC, Whittam R. The effect of furosemide on sodium movements in human red blood cells.J. Physiol 1984; 348:301–306.

    PubMed  CAS  Google Scholar 

  16. Frizzell RA, Field M, Schultz SG. Sodium-coupled chloride transport by epithelial tissues.Am J Physiol 1979;236:F1-F8.

    PubMed  CAS  Google Scholar 

  17. Burg HB. Thick ascending limb of Henle's loop.Kidney Int 1982;22:454–464.

    PubMed  CAS  Google Scholar 

  18. Sachs JR. Ouabain-insensitive sodium movements in the human red blood cell.J Gen Physiol 1971;57:259–282.

    Article  PubMed  CAS  Google Scholar 

  19. Garay RP, Meyer P. A new test showing abnormal net Na+ and K+ fluxes in erythrocytes of essential hypertensive patients.Lancet 1979;1:349–353.

    Article  PubMed  CAS  Google Scholar 

  20. Duhm J, Göbel BO. Sodium-lithium exchange and sodium-potassium countertransport in human erythrocytes. 1. Evaluation of a simple uptake test to assess the activity of two transport systems.Hypertension 1982;4:468–476.

    PubMed  CAS  Google Scholar 

  21. Ussing HH. Transport of ions across cellular membranes.Physiol Rev 1949; 29:127–133.

    CAS  PubMed  Google Scholar 

  22. Duhm J, Eisenried F, Becker BF, et al. Studies of the lithium transport across the red cell membrane. 1. Li-uphill transport by the Na-dependent Li-countertransport system in human erythrocytes.Pflügers Arch 1976;364:147–155.

    Article  PubMed  CAS  Google Scholar 

  23. Haas M, Schooler J, Tosteson C. Coupling of lithium to sodium transport in human red cells.Nature (London) 1975;258:425–427.

    Article  PubMed  CAS  Google Scholar 

  24. Pandey GN, Sarkadi B, Haas M, et al. Lithium transport pathways in human red blood cells.J Gen Physiol 1978; 72:233–248.

    Article  PubMed  CAS  Google Scholar 

  25. Morgan K, Brown RC, Spurlock G, et al. Inhibitin: A specific inhibitor of sodium/sodium exchange in erythrocyte.J Clin Invest 1986;77:538–544.

    PubMed  CAS  Google Scholar 

  26. Dissing S, Hoffman JF. Ouabain-insensitive Na-efflux from human red blood cells stimulated by outside H, Na or Li ions.J. Gen Physiol 1982;80:15a.

    Google Scholar 

  27. Canessa M, Adragna N, Solomon H, et al. Increased sodium-lithium countertransport in red cells of patients with essential hypertension.N Engl J Med 1980;302:772–776.

    Article  PubMed  CAS  Google Scholar 

  28. Aderounmu AF, Salako LA. Abnormal cation composition and transport in erythrocytes from hypertensive patients.Eur J Clin Invest 1979;9:369–375.

    PubMed  CAS  Google Scholar 

  29. Etkin NL, Mahoney JR, Forsthoefel MW, et al. Racial differences in hypertension-associated red cell sodium permeability.Nature 1982;297:588–589.

    Article  PubMed  CAS  Google Scholar 

  30. Fitzgibbon WR, Morgan TO, Meyers JB. Erythrocyte22Na efflux and urinary sodium excretion in essential hypertension.Clin Sci 1980;59(Suppl):195s-197s.

    PubMed  CAS  Google Scholar 

  31. Henningsen NC, Mattson S, Nosslin B, et al. Abnormal whole body and cellular (erythrocytes) turnover of22Na in normotensive relatives of probands with established essential hypertension.Clin Sci 1979;57:321s-324s.

    PubMed  Google Scholar 

  32. Mahoney JR, Etkin NL, McSwigan JD, et al. Assessment of red cell sodium transport in essential hypertension.Blood 1982;59:439–442.

    PubMed  CAS  Google Scholar 

  33. Postnov YV, Orlov SN, Shevchenko AS, et al. Altered sodium permeability, calcium binding and Na−K-ATPase activity in red blood cell membrane in essential hypertension.Pflügers Arch 1977;371:263–269.

    Article  PubMed  CAS  Google Scholar 

  34. Wessels F, Junge-Hulsing G, Losse H. Untersuchungen zur natriumpermeabilität der erythrozyten bei hypertonikern und normotonikern mit familiärer hochdruckbelastung.Z Kreislaufforsch 1967;56:374–380.

    CAS  Google Scholar 

  35. M'Buyamba-Kabangu JR, Lijnen P, Fagard R, Amery A. Intraerythrocyte sodium concentration in black families with and without hypertension.Methods Find Exp Clin Pharmacol 1986;8:437–442.

    PubMed  Google Scholar 

  36. Losse H, Wehmeyer H, Wessels F. Der wasser- und elektrolytgehalt von erythrocyten bei arterieller hypertonie.Klin Wochenschr 1960;38:393–402.

    Article  PubMed  CAS  Google Scholar 

  37. Cole CH. Erythrocyte membrane sodium transport in patients with treated and untreated essential hypertension.Circulation 1983;68:17–22.

    PubMed  CAS  Google Scholar 

  38. Gessler U. Intra- und extrazelluläre elektrolytveränderungen bei essentieller hypertonie vor und nach behandlung.Zeitschr Kreislaufforsch 1961;51:177–183.

    Google Scholar 

  39. Millar JA, Bramley PM, Paulin JM, et al. Evidence against a circulating ouabain-like transport inhibitor as a cause of increased red cell sodium in essential hypertension.J. Hypertens 1984;2(Suppl):461–463.

    Google Scholar 

  40. Montanari A, Borghi L, Canali M, et al. Altered sodium efflux in red blood cells from essential hypertensive subjects. In: Losse H, Zumkley H, eds.Intracellular electrolytes and arterial hypertension. Stuttgart, New York: Georg Thieme Verlag, 1980:135–144.

    Google Scholar 

  41. Saito K, Furuta Y, Sano H, et al. Abnormal relationship between dietary sodium intake and red cell sodium transport in salt-sensitive patients with essential hypertension.Clin Exp Hypertens 1985;A7:1217–1232.

    CAS  Google Scholar 

  42. Urry DW, Trapane TL, Andrews KS, et al. NMR observation of altered sodium interaction with human erythrocyte membranes of essential hypertensives.Biochem Biophys Res Commun 1980;96:514–521.

    Article  PubMed  CAS  Google Scholar 

  43. Ambrosini E, Costa FV, Montebugnoli L, et al. Increased intralymphocytic sodium content in essential hypertension.Clin Sci 1981;61:181–186.

    Google Scholar 

  44. Araoye MA, Khatri IM, Yao LL, et al. Leucocyte intracellular cations in hypertension: Effect of antihypertensive drugs.Am Heart J 1978;96:731–738.

    Article  PubMed  CAS  Google Scholar 

  45. Boon NA, Harper C, Aronson JK, et al. Cation transport functions in vitro in patients with untreated essential hypertension: A comparison of erythrocytes and leucocytes.Clin Sci 1985;68:511–515.

    PubMed  CAS  Google Scholar 

  46. Chien Y, Zhao G. Abnormal leucocyte sodium transport in Chinese patients with essential hypertension and their normotensive offspring.Clin Exp Hypertens 1984;A6:2279–2296.

    CAS  Google Scholar 

  47. Edmondson RPS, Thomas RD, Hilton PJ, et al. Abnormal cation composition and sodium transport in essential hypertension.Lancet 1975;1:1003–1005.

    Article  PubMed  CAS  Google Scholar 

  48. Poston L, Sewell RB, Williams R, et al. The effect of low molecular weight natriuretic substance and serum from hypertensive patients on the sodium transport of leucocytes from normal subjects. In: Zumkley H, Losse H, eds.Intracellular electrolytes and arterial hypertension. Stuttgart: Georg Thieme Verlag, 1980:93–97.

    Google Scholar 

  49. Duhm J, Göbel B, Lorenz R, et al. Sodium-lithium exchange and sodium-potassium cotransport in human erythrocytes. Part 2: A simple uptake test applied to normotensive and essential hypertensive individuals.Hypertension 1982;4:477–482.

    PubMed  CAS  Google Scholar 

  50. Walter U, Distler A. Abnormal sodium efflux in erythrocytes of patients with essential hypertension.Hypertension 1982;4:205–210.

    PubMed  CAS  Google Scholar 

  51. Wiley JS, Clarke DA, Bonacquisto LA, et al. Erythrocyte cation cotransport and countertransport in essential hypertension.Hypertension 1984;6:630–638.

    Google Scholar 

  52. Erdmann E, Werdan K, Hegelberger R, et al. Determination of the number of (Na+−K+)ATPase, their enzymatic activity and the active Na+/K+ transport in human erythrocytes on hypokalaemia and hypertension. In: Zumkley H, Losse H, eds.Intracellular electrolytes and arterial hypertension Stuttgart: Georg Thieme Verlag, 1980:164–170.

    Google Scholar 

  53. Swartz HGP, Bonting SL, de Pont JJ, et al. Cation fluxes and Na+−K+ activated ATPase activity in erythrocytes of patients with essential hypertension.Hypertension 1981; 3:641–649.

    Google Scholar 

  54. Tuck ML, Gross C, Maxwell MM, et al. Erythrocyte Na+,K+-cotransport and Na+,K+ pump in blacks and Caucasian hypertensive patients.Hypertension 1984;6: 536–544.

    PubMed  CAS  Google Scholar 

  55. Wambach G, Helber A. Na−K-ATpase in erythrocyte ghosts is not a marker for primary hypertension.Clin Exp Hypertens 1981;3:663–673.

    PubMed  CAS  Google Scholar 

  56. Garay RP, Elghozi JL, Dagher C, et al. Laboratory distinction between essential and secondary hypertension by measurement of erythrocyte cation fluxes.N Engl J Med 1980;302:769–771.

    Article  PubMed  CAS  Google Scholar 

  57. Wambach G, Helber A, Bonner G, et al. Natrium-kalium ATPase aktivität in erythrozytenghosts von patienten mit essentieller hypertonie.Klin Wochenschr 1979;57:169–172.

    Article  PubMed  CAS  Google Scholar 

  58. Woods KL, Beevers DG, West MJ. Racial differences in red cell cation transport and their relationship to essential hypertension.Clin Exp Hypertens 1981;3:655–662.

    PubMed  CAS  Google Scholar 

  59. Rygielski DB, Kropp DZ, Duran NN. Hypertension and the Na−K pump (abstract).Fed Proc 1981;40:611.

    Google Scholar 

  60. Walter U, Distler A. Effects of ouabain and furosemide on ATPase activity and sodium transport in erythrocytes of normotensives and of patients with essential hypertension. In: Zumkley H, Losse H. eds.Intracellular electrolytes and arterial hypertension. Stuttgart: Georg Thieme Verlag, 1980;170–181.

    Google Scholar 

  61. Forrester TE, Alleyne GAO. Leucocyte electrolytes and sodium efflux rate constants in the hypertension of preclampsia.Clin Sci 1980;59:199s-201s.

    PubMed  CAS  Google Scholar 

  62. Poston L, Sewell RB, Wilkinson SP, et al. Evidence for a circulating sodium transport inhibitor in essential hypertension.Br Med J 1981;282:847–849.

    CAS  Google Scholar 

  63. Thomas RD, Edmondson RPS, Hilton, PJ, et al. Abnormal sodium transport in leucocytes from patients with essential hypertension and the effect of treatment.Clin Sci Mol Med 1975;48:169s-170s.

    Google Scholar 

  64. De Wardener HE, McGregor CA. Dahl's hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: Its possible role in essential hypertension.Kidney Int 1980;18:1–9.

    PubMed  Google Scholar 

  65. De Mendonca M, Grichois ML, Garay RP, et al. Abnormal net Na+ and K+ fluxes in erythrocytes of three varieties of genetically hypertensive rats.Proc Natl Acad Sci USA 1980;77:4283–4286.

    Article  PubMed  Google Scholar 

  66. Cusi D, Barlassina C, Ferrandi M, et al. Relationship between altered Na+−K+ countertransport in the erythrocytes of essential hypertensive patients.Clin Sci 1981; 61:335–345.

    Google Scholar 

  67. Garay RP, Dagher G, Pernollet MG, et al. Inherited defect in Na+,K+-cotransport system in erythrocytes from essential hypertensive patients.Nature (London) 1980;284:281–283.

    Article  PubMed  CAS  Google Scholar 

  68. Davidson J, Opie L, Keding B. Sodium-potassium cotransport activity as genetic marker in essential hypertension.Br Med J 1982;284:539–541.

    Article  CAS  Google Scholar 

  69. Stessman J, Melker J, Sharon R, et al. Erythrocyte Na+−K+ cotransport and blood pressure in identical twins.Clin Exp Hypertens 1983;A5:493–499.

    CAS  Google Scholar 

  70. Weder AB, Torretti BA, Julius S. Racial differences in erythrocyte cation transport.Hypertension 1984;6:115–123.

    PubMed  CAS  Google Scholar 

  71. Bianchi G, Ferrari P, Trizio D, et al. Red blood cell abnormalities and spontaneous hypertension in the rat. A genetically determined link.Hypertension 1985;7:319–325.

    PubMed  CAS  Google Scholar 

  72. Adragna NC, Canessa ML, Solomon H, et al. Red cell lithium sodium countertransport and cotransport in patients with essential hypertension.Hypertension 1982; 4:795–804.

    PubMed  CAS  Google Scholar 

  73. Canessa M, Spalvins A, Adragna N, et al. Red cell sodium countertransport and cotransport in normotensive and hypertensive blacks.Hypertension 1984;6:344–351.

    PubMed  CAS  Google Scholar 

  74. Smith JB, Ash KO, Hunt SC, et al. Three red cell sodium transport systems in hypertensive and normotensive Utah adults.Hypertension 1984;6:159–166.

    PubMed  CAS  Google Scholar 

  75. Garay RP, Nazaret C, Dagher G, et al. A genetic approach to the geography of hypertension: Examination of Na+−K+ cotransport in Ivory Coast Africans.Clin Exp Hypertens. 1981;3:861–870.

    PubMed  CAS  Google Scholar 

  76. M'Buyamba-Kabangu JR, Lijnen P, Groeseneken D, et al. Racial differences in intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of normal male subjects.J. Hypertens 1984;2:647–651.

    Article  PubMed  Google Scholar 

  77. Mahnensmith RL, Aronson PS. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathological processes.Circ Res 1985;56:773–788.

    PubMed  CAS  Google Scholar 

  78. Weder AB. Red cell lithium-sodium countertransport and renal lithium clearance in hypertension.N Engl J Med 1986;314:198–201.

    Article  PubMed  CAS  Google Scholar 

  79. Blaustein MP, Sodium transport and hypertension. Where are we going?Hypertension 1984;6:445–453.

    PubMed  CAS  Google Scholar 

  80. Lijnen P, M'Buyamba-Kabangu JR, Fagard R, et al. Intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of white normal male subjects with and without a family history of hypertension.J Hypertens 1984;2:25–30.

    Article  PubMed  CAS  Google Scholar 

  81. Hennessey JF, Ober KP. Racial difference in intact erythrocyte ion transport.Ann Clin Lab Sci 1982;12:35–41.

    Google Scholar 

  82. Balfe JW, Cole C, Smith EKM, et al. A hereditary sodium transport defect in the human red blood cell.J Clin Invest 1968;47:4a.

    Google Scholar 

  83. Love W, Burch GE. Plasma and erythrocyte sodium and potassium concentration in a group of southern white and negro blood donors.J Lab Clin Med 1953;41:258–267.

    PubMed  CAS  Google Scholar 

  84. Munro-Faure AD, Hill DM, Anderson J, Ethnic differences in human blood cell sodium concentration. Nature 1971; 231:457–458.

    Article  PubMed  CAS  Google Scholar 

  85. Lasker N, Hopp L, Grossman S, et al. Race and sex differences in erythrocyte Na+,K+ and Na+,K+-adenosine triphosphatase.J Clin Invest 1985;75:1813–1820.

    PubMed  CAS  Google Scholar 

  86. McGregor GA, Fenton S, Zadeh JA, et al. An increase in a circulating inhibitor of Na+−K+-dependent ATPase: A possible link between salt intake and the development of essential hypertension.Clin Sci 1981;61:17s-20s.

    Google Scholar 

  87. Brewer GJ. Genetic and population studies of quantitative levels of adenosine triphosphate in human erythrocytes.Biochem Gen 1967;1:25–34.

    Article  CAS  Google Scholar 

  88. Woods JW, Falk RJ, Pittman AW, et al. Increased red cell sodium lithium countertransport in normotensive sons of hypertensive parents.N Engl J Med 1982;306:593–595.

    Article  PubMed  CAS  Google Scholar 

  89. Gudmundsson O, Andersson O, Herlitz H, et al. Blood pressure, intraerythrocyte content and transmembrane fluxes of sodium during normal and high salt intake in subjects with and without a family history of hypertension.J Hypertens 1984;6:S35–41.

    Google Scholar 

  90. Henningsen NC, Nelson D. Red cell metabolism of sodium in relatives to patients with an established essential hypertension. In: Losse H, Zumkley H, eds.Intracellular electrolytes and arterial hypertension. Stuttgart: Georg Thieme Verlag, 1980:205–212.

    Google Scholar 

  91. Zidek W, Vetter H, Dorst KG, et al. Intracellular Na2+ and Ca2+ activities in essential hypertension.Clin Sci 1982;63:41S-44S.

    Google Scholar 

  92. Heagerty AM, Milner M, Bing RF, et al. Leucocyte membrane sodium transport in normotensive populations: Dissociation of abnormalities of sodium efflux from raised blood pressure.Lancet 1982;2:894–896.

    Article  PubMed  CAS  Google Scholar 

  93. Pedersen KE, Nielson JR, Kjaer K, et al. Na+ influx in lymphocytes from normotensive subjects with and without a family history of essential hypertension.J Hypertens 1983;1:132s-134s.

    Google Scholar 

  94. Krzesinski JM. Contribution à l'étude de l'étio-athogénie de l'hypertension artérielle essentielle par la mesure des flux de sodium et potassium érythrocytaires. Mémoire. Université de Liège, 1985.

  95. M'Buyamba-Kabangu JR, Lijnen P, Fagard R, et al. Intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of normal men and women.Arch Gynecol 1985;236:219–224.

    Article  PubMed  Google Scholar 

  96. M'Buyamba-Kabangu JR, Lijnen P, Fagard R, et al. Erythrocyte concentrations and transmembrane fluxes of sodium and potassium and biochemical measurements during the menstrual cycle in normal women.Am J Obstet Gynecol 1985;151:687–693.

    PubMed  Google Scholar 

  97. Englehardt I, Schlolze J, Frille J, et al. Ouabain-insensitive net sodium influx in erythrocytes in health and disease. Submitted for publication.

  98. Beilin LJ, Knight GJ, Munro-Faure AD, et al. The sodium, potassium and water contents of red blood cells of healthy human adults.J Clin Invest 1966;45:1817–1825.

    Article  PubMed  CAS  Google Scholar 

  99. Stokes GS, Monaghan JC, Marwood JF. Erythrocyte cation transport is sex-related and is modified by oral contraceptives.Clin Exp Hypertens 1985;A7:1199–1215.

    CAS  Google Scholar 

  100. Sigström L, Waldenström J, Karlberg P. Characteristics of active sodium and potassium transport in erythrocytes of healthy infants and children.Acta Paed Scand 1981; 70:347–352.

    Google Scholar 

  101. Beutler E, Kuhl N, Sachs P. Sodium-potassium-ATPase activity is influenced by ethnic origin and not by obesity.N Engl J Med 1983;309:756–760.

    Article  PubMed  CAS  Google Scholar 

  102. Lijnen P, M'Buyamba-Kabangu JR, Fiocchi R, et al. Sodium and potassium fluxes and concentrations in erythrocytes of normal subjects during prolonged sodium depletion and repletion.Postgrad Med J 1986;62:3–12.

    PubMed  CAS  Google Scholar 

  103. Trevisan M, Cooper R, Ostrow D, et al. Dietary sodium, erythrocyte sodium concentration, sodium-stimulated lithium efflux and blood pressure.Clin Sci 1981;61:29s-32s.

    PubMed  CAS  Google Scholar 

  104. Cooper R, Trevisan M, Van Horn L, et al. Effect of dietary sodium reduction on red blood cell sodium concentration and sodium-lithium countertransport.Hypertension 1984; 6:731–735.

    PubMed  CAS  Google Scholar 

  105. Morgan T, Myers J, Fitzgibbon W. Sodium intake, blood pressure and red cell sodium efflux.Clin Exp Hypertens 1981;3:641–653.

    PubMed  CAS  Google Scholar 

  106. Weissberg PL, West MJ, Wilkins MR, et al. Effects of changes in dietary sodium intake on normotensive subjects with and without a genetic predisposition to essential hypertension.J Hypertens 1984;2:511s-513s.

    Google Scholar 

  107. Doucet A. Na−K-ATPase: General considerations, role and regulation in the kidney.Adv Nephrol 1985;14:87–159.

    CAS  Google Scholar 

  108. Kanazawa T, Saito M, Tonomura Y. Formation and decomposition of a phosphorylated intermediate in the reaction of Na plus-K plus dependent ATPase.J Biochem 1970; 67:693–711.

    PubMed  CAS  Google Scholar 

  109. Robinson JD, Flashner MS. Cation and nucleotide interactions with the Na,K-ATPase. In: Skou JC, Norby JG, eds.Na,K-ATPase, Structure and kinetics. London: Academic Press, 1979:275–285.

    Google Scholar 

  110. Kojima I, Yoshihara S, Ogata E. Involvement of digitalis-like substance in genesis of deoxycorticosterone-salt hypertension.Life Sci 1982;30:1775–1781.

    Article  PubMed  CAS  Google Scholar 

  111. Price MB, Pamnani MB, Burris JF, et al. Acute volume expansion in humans releases a factor which inhibits the vascular Na+−K+ pump.J Hypertens 1984;2(Suppl 3):471–472.

    CAS  Google Scholar 

  112. Dagher G, Brossard M, Feray JC, et al. Modulation of erythrocyte Na transport pathway(s) by excess Na intake.Life Sci 1985;37:243–253.

    Article  PubMed  CAS  Google Scholar 

  113. Beuckelmann D, Erdmann E. Perturbation of sodium-lithium countertransport in red cells.N Engl J Med 1985; 312:1193–1194.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lijnen, P., M'Buyamba-Kabangu, JR., Fagard, R. et al. Erythrocyte concentrations and transmembrane fluxes of sodium and potassium in essential hypertension: Role of intrinsic and environmental factors. Cardiovasc Drug Ther 4 (Suppl 2), 321–333 (1990). https://doi.org/10.1007/BF02603172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02603172

Key Words

Navigation