Skip to main content
Log in

Mutations affecting the regulation of γ-aminobutyrate utilization inEscherichia coli K-12

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Four genes,gabCPDT, are involved in the utilization of γ-aminobutyrate (GABA) byEscherichia coli K-12. Thegab gene cluster maps nearrecA andsrl, at 57.5 min.gabP, gabD andgabT specify the synthesis of GABA transport carrier, succinic semialdehyde dehydrogenase (SSDH), and glutamate-succinic semialdehyde transaminase (GSST), respectively;gabC controls the synthesis of all three proteins. GABA-nonutilizing mutants carrying deletions insrl extended into thegab cluster have been isolated. The mutants completely lost the capacity for GABA transport, while preserving full activity of GSST and SSDH, suggesting thatgabC is not a promoter-operator locus or a gene coding for an activator protein. A mutation ingabD (M-16) that abolished SSDH activity had the following additional properties: It exerted a bipolar effect on the neighboring genes, greatly reducing the activities of GSST and SSDH; the polar effect ongabP but not ongabT was fully suppressed by the knownrho mutation suA78; at least three classes of GABA-utilizing revertants of M-16 were obtained: (i) revertants with allgab activities restored to the parental levels; (ii) revertants with SSDH activity still missing, but with the other activities fully repaired; (iii) revertants with no SSDH activity, with GSST partly recovered, but with transport fully repaired. It is suggested that thegab cluster is transcribed bidirectionally from a promoter in thegabD region and that the mutation in strain M-16 may be due to DNA insertion in that region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Billheimer, J. T., Cornvale, H. N., Leisinger, T., Eckhardt, T., Jones, E. E. 1976. Ornithine δ-transaminase inEscherichia coli: Its identity with acetylornithine δ-transaminase. Journal of Bacteriology127:1315–1323.

    CAS  Google Scholar 

  2. Boyen, A., Charlier, D., Crabeel, M., Cunin, R., Palchaudhuri, S., Glansdorff, N.. 1978. Studies on the control region of the bipolarargECBH operon ofEscherichia coli. I. Effect of regulatory mutations and IS2 insertions. Molecular and General Genetics161:185–196.

    PubMed  CAS  Google Scholar 

  3. Charlier, D., Crabeel, M., Palchaudhuri, S., Cunin, R., Boyen, A., Glansdorff, N.. 1978. Heteroduplex analysis of regulatory mutations and of insertions (IS1, IS2, IS5) in the bipolarargECBH operon ofEscherichia coli. Molecular and General Genetics161:175–184.

    PubMed  CAS  Google Scholar 

  4. de Crombrugghe, B., Adhya, S., Gottesman, M., Pastan, I. 1973. Effect ofrho on transcription of bacterial operons. Nature New Biology241:260–264.

    Article  PubMed  Google Scholar 

  5. Das, A., Court, D., Adhya, S.. 1976. Isolation and characterization of conditional lethal mutants ofEscherichia coli defective in transcription termination factor rho. Proceedings of the National Academy of Sciences of the United States of America73:1959–1963.

    Article  PubMed  CAS  Google Scholar 

  6. Das, A., Court, D., Gottesman, M., Adhya, S.. 1977. Polarity of insertion mutations is caused by Rho-mediated termination of transcription, pp. 93–97. In: Bukhari, A. I., Shapiro, J. A., Adhya, S. L. (eds.), DNA insertion elements, plasmids and episomes. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  7. Dover, S., Halpern, Y. S.. 1972. Utilization of γ-aminobutyric acid as the sole carbon and nitrogen source byEscherichia coli K-12 mutants. Journal of Bacteriology109:835–843.

    PubMed  CAS  Google Scholar 

  8. Dover, S., Halpern, Y. S.. 1972. Control of the pathway of γ-aminobutyrate breakdown inEscherichia coli K-12. Journal of Bacteriology110:165–170.

    PubMed  CAS  Google Scholar 

  9. Guha, A., Saturen, Y., Szybalski, W.. 1971. Divergent orientation of transcription from the biotin locus ofEscherichia coli. Journal of Molecular Biology56:53–62.

    Article  PubMed  CAS  Google Scholar 

  10. Hofnung, M.. 1974. Divergent operons and the genetic structure of the maltose B region inEscherichia coli K-12. Genetics76:169–184.

    PubMed  CAS  Google Scholar 

  11. Jakoby, W. B.. 1962. Enzymes of γ-aminobutyrate metabolism (bacterial), pp. 765–778. In: Colowick, S. P., Kaplan, N. O., (eds.), Methods in enzymology, vol. 5. New York: Academic Press.

    Chapter  Google Scholar 

  12. Kahane, S., Levitz, R., Halpern, Y. S.. 1978. Specificity and regulation of γ-aminobutyrate transport inEscherichia coli. Journal of Bacteriology135:295–299.

    PubMed  CAS  Google Scholar 

  13. Kleckner, N., Reichardt, K., Botstein, D.. 1979. Inversions and deletions of theSalmonella chromosome generated by the translocatable tetracycline resistance element Tn10. Journal of Molecular Biology127:89–115.

    Article  PubMed  CAS  Google Scholar 

  14. Lennox, E.. 1955. Transduction of linked genetic characters of the host by bacteriophage PI. Virology1:190–206.

    Article  PubMed  CAS  Google Scholar 

  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry193:265–275.

    PubMed  CAS  Google Scholar 

  16. Metzer, E., Levitz, R., Halpern, Y. S.. 1979. Isolation and properties ofEscherichia coli K-12 mutants impaired in the utilization of γ-aminobutyrate. Journal of Bacteriology137:1111–1118.

    PubMed  CAS  Google Scholar 

  17. Miller, J.. 1972. Experiments in molecular genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  18. Peterson, P. A., Ghosal, D., Sommer, H., Seadler, H.. 1979. Development of a system useful for studying the formation of unstable alleles of IS2. Molecular and General Genetics173:15–21.

    Article  PubMed  CAS  Google Scholar 

  19. Seadler, H., Reif, H. J., Hsu, S., Davidson, N.. 1974. IS2, a genetic element for turn-off and turn-on of gene activity inE. coli. Molecular and General Genetics132:265–289.

    Article  Google Scholar 

  20. Simon, L. D., Gottesman, M., Tomczak, K., Gottesman, S. 1979. Hyperdegradation of proteins inEscherichia coli rho mutants. Proceeding of the National Academy of Sciences of the United States of America76:1623–1627.

    Article  CAS  Google Scholar 

  21. Sommer, H., Cullum, J., Seadler, H.. 1979. IS2-43 and IS2-44: New alleles of the insertion sequence IS2 which have promoter activity. Molecular and General Genetics175:53–56.

    Article  PubMed  CAS  Google Scholar 

  22. Zaboura, M., Halpern, Y. S.. 1978. Regulation of γ-aminobutyric acid degradation inEscherichia coli by nitrogen metabolism enzymes. Journal of Bacteriology133:447–451.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzer, E., Halpern, Y.S. Mutations affecting the regulation of γ-aminobutyrate utilization inEscherichia coli K-12. Current Microbiology 4, 51–55 (1980). https://doi.org/10.1007/BF02602892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02602892

Keywords

Navigation