, Volume 44, Issue 3, pp 192–202 | Cite as

Characterization of class IIA andB genes in a gynogenetic carp clone

  • Saskia H. M. van Erp
  • Egbert Egberts
  • René J. M. Stet
Original Paper


A prerequisite for carrying out functional studies on major histocompatibility complex (Mhc) molecules of fish is the availability of genetically well-defined homozygous strains. Previously we have applied gynogenetic reproduction to generate isogenic carp, denoted clone A410. This clone has recently been demonstrated to express a single class I gene,Cyca-UA1*01, and in the present study two class IIB and two class IIA transcripts were obtained. The two class IIB transcript,Cyca-D(CB3)B andCyca-D(CB4)B, as well as the class II A transcripts,Cycaw-D (10A)A andCyca-D(15A)A, appear to be bona fide class II transcripts, based on the presence of conserved protein characteristics of the inferred class II molecules. With the isolation of class IIA sequences, representatives of all major classes ofMhc genes have been identified in the carp. To assess the relationship between the different class II genes, segregation studies, comparison of cDNA and intron 1 sequence data, and phylogenetic analyses were undertaken. These showed that the class IIB transcripts,Cyca-D(CB3)B andCyca-D(CB4)B, are derived from related, closely lined loci. In addition, these studies indicated that the previously describedCyca-DAB*01 andCyca-DAB*02 are also closely linked, but that this linked pair segregates independently from theCyca-D(CB3)B andCyca-D(CB4)B loci. The class IIA transcripts are most likely derived from separate loci and do not represent alleles, as they were found not to segregate in the individuals of the clone which was generated by meiogenetic gynogenesis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Betz, U. A. K., Mayer, W. E., and Klein, J. Major histocompatibility complex class I genes of the coelacanthLatimeria chalumnae.Proc. Natl Acad Sci USA 91: 10065–11069, 1994.CrossRefGoogle Scholar
  2. Boss, J. M., Mengler, R., Okada, K., Auffray, C., and Strominger, J. L. Sequence analysis of the human major histocompatibility gene SX-alpha.Mol Cell Biol 5: 2677–2683, 1985PubMedGoogle Scholar
  3. Dixon B., Stet, R. J. M., Van Erp, S. H. M., and Pohajadak, B. Characterization of β2-microglobulin transcripts from two teleost species.Immunogenetics 38: 27–34, 1993PubMedCrossRefGoogle Scholar
  4. Dixon, B., Van Erp, S. H. M., Rodrigues, P. N., Egberts, E., and Stet, R. J. M. Fish major histocompatibility complex genes: an expansion.Dev Comp Immunol 19: 109–133, 1995PubMedCrossRefGoogle Scholar
  5. Glamann, J. Complete coding sequence of rainbow trout Mhc IIβ chain.Scan J Immunol 41: 365–372, 1995CrossRefGoogle Scholar
  6. Grossberger, D. and Parham, P. Reptilian class I major histocompatibility complex genes reveal conserved elements in class I structure.Immunogenetics 36: 166–174, 1992PubMedCrossRefGoogle Scholar
  7. Hardee, J. J., Godwin, U., Benedetto, R., and McConnell, T. J. Major histocompatibility complex class IIA gene polymorphism in the striped bass.Immunogenetics 41: 229–238, 1995PubMedCrossRefGoogle Scholar
  8. Hashimoto, K., Nakanishi, T., and Kurosawa, Y. Isolation of carp genes encoding major histocompatibility complex antigens.Proc Natl Acad Sci USA 87: 6863–6867, 1990PubMedCrossRefGoogle Scholar
  9. Haviland, D. L., Haviland, J. C., Fleisher, D. T., and Wetsel, R. A. Structure of the murine fifth complement component (C5) gene. A large, highly interrupted gene with a variant donor splice site and organizational homology with the third and fourth complement component genes.J Biol Chem 18: 11818–11825, 1991Google Scholar
  10. Higgins, D. G., Bleasby, A. J., and Fuchs, R. CLUSTAL V: improved software for multiple sequence alignment.Comput Appl Biosci 8: 189–191, 1992PubMedGoogle Scholar
  11. Hordvik, I., Grimhot, U., Fosse, V. M., Lie, Ø., and Endresen, C. Cloning and sequence analysis of cDNAs encoding the MHC class II β chain in Atlantic salmon (Salmo salar), Immunogenetics 37, 437–441, 1993PubMedCrossRefGoogle Scholar
  12. Jukes, T. H. and Cantor, C. E. Evolution of protein molecules.In H. N. Munro (ed.)Mammalian Protein Metabolism, pp. 21–132, Academic Press, New York, 1969Google Scholar
  13. Kaastrup, P., Stet, R. J. M., Tigchelaar, A. J., Egberts, E., and Van Muiswinkel, W. B. A major histocompatibility locus in fish: serological identification and segregation of transplantation antigens in the common carp (Cyprinus carpio L.).Immunogenetics 30: 284–290, 1989PubMedCrossRefGoogle Scholar
  14. Kasahara, M., Vazquez, M., Sato, K., McKinney, E. C., and Flajnik, M. Evolution of the major histocompatibility complex: isolation of class II A cDNA clones from the cartilaginous fish.Proc Natl Acad Sci USA 89: 6688–6692, 1992PubMedCrossRefGoogle Scholar
  15. Kaufman, J., Salomonsen, J., and Flajnik, M. Evolutionary conservation of MHC class I and class II molecules-different yet the same.Seminars in Immunol 6: 411–424, 1994CrossRefGoogle Scholar
  16. Klein, D., Ono, H., O'hUigin, C., vincek, V., Goldschmidt, T., and Klein, J. Extensive MHC variability in cichlid fishes of Lake Malawi.Nature 364: 330–334, 1993PubMedCrossRefGoogle Scholar
  17. Komen, J., Bongers, A. B. J., Richter, C. J. J., Van Muiswinkel, W. B., and Huisman, E. A. Gynogenesis in common carp (Cyprinus carpio L.) II. The production of homozygous gynogenetic clones and F1 hybrids.Aquaculture 92: 127–142, 1991CrossRefGoogle Scholar
  18. Kumar, S., Tamura, K., and Nei, M., MEGA:Molecular Evolutionary Genetics Analysis, version 1.01, The Pennsylvania State University, Univesity Park, 1993Google Scholar
  19. Okamura, K., Nakanishi, T., Kurosawa, Y., and Hashimoto, K. Expansion of genes that encode MHC class I molecules in cyprinid fishes.J. Immunol 151: 188–200, 1993PubMedGoogle Scholar
  20. Ohno, S., Muramoto, J., and Christian, L. Diploid-tetraploid relationship among old-world members of the fish family.Cyprinidae. Chromosoma 23: 1–9, 1967CrossRefGoogle Scholar
  21. Ono, H., Klein, D., Vincek, V., Figueroa, F., O'hUigin, C., Tichy, H., and Klein, J. Major histocompatibility complex class II genes of zebrafish.Proc Natl Acad Sci USA 89: 11886–11890, 1992PubMedCrossRefGoogle Scholar
  22. Ono, H., O'hUigin, C., Vincek, V., Stet, R. J. M., Figueroa, F., and Klein, J. New β chain-encodingMhc class II genes in the carp.Immunogenetics 38: 146–149, 1993PubMedGoogle Scholar
  23. Saitou, N., and Nei, M. The neighbour-joining method: a new method for reconstructing phylogenetic trees.Mol Biol Evol 4: 406–425, 1987PubMedGoogle Scholar
  24. Senapathy, P., Shapiro, M. B., and Harris, N. L. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to Genome Project.Meth Enzymol 183: 252–278, 1990PubMedCrossRefGoogle Scholar
  25. Stet, R. J. M., Dixon, B., Van Erp, S. H. M., Van Lierop, M. C., Rodrigues, P. N. S., and Egberts, E. Inference of structure and function of fish major histocompatibility complex (MHC) molecules from expressed genes.Fish Shellfish Immunol. in pressGoogle Scholar
  26. Stet, R. J. M., and Egberts, E. The histocompatibility system in teleostean fishes: from multiple histocompatibility loci to a major histocompatibility complex.Fish Shellfish Immunol. 1: 1–16, 1991Google Scholar
  27. Stet, R. J. M., Van Erp, S. H. M., Hermsen, T., Sültmann, H. A., and Egberts, E. Polymorphism and estimation of the number ofMhcCyca class I genes in laboratory strains of the common carp (Cyprinus carpio L.).Dev. Comp Immunol. 17: 141–156, 1993PubMedCrossRefGoogle Scholar
  28. Stroband, H. W. J., Stevens, C., Te Kronnie, G., Samallo, J., Schipper, H., Kramer, B., and Timmermans, L. P. M.. Expression ofcarpcdx1, acaudal homolog, in embryos of the carp,Cyprinus carpio.Roux's Arch Dev Biol 204: 369–377, 1995CrossRefGoogle Scholar
  29. Sültmann, H., Mayer, W. E., Figueroa, F., O'hUigin, C., and Klein, J. ZebrafishMhc class II α chain-encoding genes: polymorphism, expression, and function.Immunogenetics 38: 408–420, 1993PubMedCrossRefGoogle Scholar
  30. Sültmann, H., Mayer, W. E., Figueroa, F., O'hUigin, C., and Klein, J. Organization ofMhc class IIB genes in the zebrafish (Brachydanio rerio)Genomics 23: 1–14 1994PubMedCrossRefGoogle Scholar
  31. Takeuchi, H., Figueroa, F., O'hUigin, C., and Klein, J. Cloning and characterization of class IMhc genes of the zebrafish,Brachydanio rerio.Immunogenetics 42: 77–84, 1995PubMedCrossRefGoogle Scholar
  32. Van Erp, S. H. M., Dixon, B., Figueroa, F., Egberts, E., and Stet, R. J. M. Identification and characterization of a novel major histocompatibility complex class I gene from carp (Cyprinus carpio L.).Immunogenetics in pressGoogle Scholar
  33. Walker, R. A., McConnell, T. J. Variability in an MHCMosa class II β chain encoding gene in striped bass (Morone saxatilis).Dev Comp Immunol 18: 325–342, 1994PubMedCrossRefGoogle Scholar
  34. Wiegertjes, G. F., Stet, R. J. M., Bongers, G. A. B. J., Voorthuis, P., Zandieh Doulabi, B., Groeneveld, A., and Van Muiswinkel, W. B. Investigation into the immune responsiveness of F1 hybrids of homozygous carp (Cyprinus carpio L.) selected for high or low antibody production: indication for immune gene control.In G. F. Wiegerties (ed.)Immunogenetics of Disease Resistance in Fish. Thesis, Wageningen Agricultural University, Wageningen, 1995Google Scholar
  35. Wiegertjes, G. F., Stet, R. J. M., and Van Muiswinkel, W. B. Divergent selection for antibody production in common carp (Cyprinus carpio L.) using gynogenesis.Anim. Genet 25: 251–257, 1994PubMedCrossRefGoogle Scholar
  36. Wohlfarth, G., Lahman, M., Hulata, G., and Moav, R. The story of Dor-70: a selected strain of the Israeli common carp.Bamidgeh 32: 3–5, 1980Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Saskia H. M. van Erp
    • 1
  • Egbert Egberts
    • 1
  • René J. M. Stet
    • 1
  1. 1.Department of Experimental Animal Morphology and Cell BiologyWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations