Skip to main content
Log in

Quantification of corrinoids in methanogenic bacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Corrinoids in several diverse species of methanogens were quantified by a bioassay utilizingEscherichia coli 113–3, a corrinoid auxotroph. All five species examined contained >0.65 nmol corrinoid/mg dry cells when grown on H2/CO2 as carbon and energy source. The highest corrinoid levels (4.1 nmol/mg cells) were found inMethanosarcina barkeri grown on methanol. The amount of corrinoids found in this species was dependent on growth conditions, but, regardless of energy source, metabolized levels inMethanosarcina barkeri were higher than those found in theMethanobacterium species examined (M. arbophilicum, M. formicium, M. ruminantium, andM. thermoautotrophicum).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Barker, H. A. 1956. Biological formation of methane, pp. 1–27. In: Bacteria fermentations. New York: John Wiley and Sons.

    Google Scholar 

  2. Blaylock, B. A., Stadtman, T. C. 1963. Biosynthesis of methane from the methyl moiety of methyl-cobalamin. Biochemical and Biophysical Research Communications11:34–38.

    Article  PubMed  CAS  Google Scholar 

  3. Daniels, L., Zeikus, J. G. 1978. One carbon metabolism in methanogenic bacteria: Analysis of short-term fixation products of14CO2 and14CH3OH incorporated into whole cells. Journal of Bacteriology136:75–84.

    PubMed  CAS  Google Scholar 

  4. Dawson, R. M. C., Elliott, D. C., Elliot, W. H., Jones K. M. (eds.). 1972. Data for biochemical research, pp. 196–197. Oxford: University Press.

    Google Scholar 

  5. Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S., Woese, C. R. 1977. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proceedings of the National Academy of Sciences of the United States of America74:4537–4541.

    Article  PubMed  CAS  Google Scholar 

  6. Gunsalus, R. P., Romesser, J. A., Wolfe, R. S. 1978. Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system ofMethanobacterium thermoautotrophicum. Biochemistry17:2374–2377.

    Article  PubMed  CAS  Google Scholar 

  7. Gunsalus, R., Eirich, D., Romesser, J., Balch, W., Shapiro, S., Wolfe, R. S. 1976. Methyl transfer and methane formation, pp. 191–198. In: Schlegel, H. G., Gottschalk, G., Pfennig, N. (eds.), Microbial production and utilization of gases. Göttingen: Goltze.

    Google Scholar 

  8. Harrison, E., Lees, K. A., Wood, F. 1951. The assay of Vitamin B12. Part VI: Microbiological estimation with a mutant ofEscherichia coli by the plate method. Analyst76:696–705.

    Article  CAS  Google Scholar 

  9. McBride, B. C., Wolfe, R. S. 1971. A new coenzyme of methyl transfer, coenzyme M. Biochemistry10:2317–2324.

    Article  PubMed  CAS  Google Scholar 

  10. Stadtman, T. C. 1960: Synthesis of adenine-B12 byClostridium sticklandii: Relationship to one carbon metabolism. Journal of Bacteriology79:904–905.

    PubMed  CAS  Google Scholar 

  11. Stadtman, T. C. 1967. Methane fermentation. Annual Review of Microbiology21:121–142.

    Article  PubMed  CAS  Google Scholar 

  12. Tanner, R. S., Wolfe, R. S., Ljungdahl, L. G. 1978. Tetrahydrofolate enzyme levels inAcetobacterium woodii and their implication in the synthesis of acetate from CO2. Journal of Bacteriology134:668–670.

    PubMed  CAS  Google Scholar 

  13. Taraya, T., Honda, S., Fukui, S. 1979. Fermentation of 1,2-propanediol and 1,2-ethanediol by some genera of Enterobacteriaceae, involving coenzyme B12-dependent diol dehydratase. Journal of Bacteriology139:39–47.

    Google Scholar 

  14. Taylor, C. D. 1975. Structure and methylation of a new cofactor (coenzyme M) in methyl-transfer reactions, pp. 181–191. In: Schlegel, H. G., Gottschalk, G., Pfenning, N. (eds.), Microbial production and utilization of gases. Göttingen: Goltze.

    Google Scholar 

  15. Weimer, P. J., Zeikus, J. G. 1978. Acetate metabolism inMethanosarcina barkeri. Archives of Microbiology119:175–182.

    Article  PubMed  CAS  Google Scholar 

  16. Weimer, P. J., Zeikus, J. G. 1978. One carbon metabolism in methanogenic bacteria: Cellular characterization and growth ofMethanosarcina barkeri. Archives of Microbiology119:49–57.

    Article  PubMed  CAS  Google Scholar 

  17. Wolfe, R. S., Wolin, E. A., Wolin, M. J., Allan, A. M., Wood, H. M. 1966. Biochemistry of methane formation inMethanobacillus omelianskii. Developments in Industrial Microbiology7:162–169.

    Google Scholar 

  18. Wolfe, R. S. 1971. Microbial formation of methane. Advances in Microbial Physiology6:107–146.

    Article  PubMed  CAS  Google Scholar 

  19. Wolfe, R. S., Higgins, I. J. 1979. Biochemistry of methane—a study in contrasts, pp. 267–347. In: Quayle, J. R. (ed.), Microbial biochemistry, vol. 21. Baltimore: University Park Press.

    Google Scholar 

  20. Zeikus, J. G. 1977. The biology of methanogenic bacteria. Bacteriological Reviews41:514–541.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krzycki, J., Zeikus, J.G. Quantification of corrinoids in methanogenic bacteria. Current Microbiology 3, 243–245 (1980). https://doi.org/10.1007/BF02602456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02602456

Keywords

Navigation