Skip to main content
Log in

A high-potential nonheme iron protein (HiPIP)-linked, thiosulfate-oxidizing enzyme derived fromChromatium vinosum

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A thiosulfate-oxidizing enzyme was partially purified fromChromatium vinosum, and some of its properties were studied. The enzyme rapidly reducede HiPIP (high-potential nonheme iron protein) in the presence of thiosulfate. Cytochromesc of yeast and tuna and ferricyanide also acted well as electron acceptors for the enzyme; horse cytochromec was a poor electron acceptor. Cytochromec-552, cytochromec′, and cytochromec-553 did not act as electron acceptors. The enzyme was inhibited by cyanide and sulfite. On the basis of the stoichiometry in reduction of ferricyanide catalyzed by the enzyme in the presence of thiosulfate, the oxidized product of thiosulfate was inferred to be tetrathionate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Bartsch, R. G. 1971. High potential iron proteins: Bacterial, pp. 644–649. In: San Pietro A. (ed.), Methods in enzymology, vol. 23A. New York: Academic Press.

    Google Scholar 

  2. Bartsch, R. G. 1978. Purification of (4Fe-4S)1−2−ferredoxins (high-potential iron-sulfur proteins) from bacteria, pp. 329–340. In: Fleischer, S., Packer, L. (eds.), Methods in enzymology, vol. III. New York: Academic Press.

    Google Scholar 

  3. Bartsch, R. G., Kamen, M. D. 1960. Isolation and properties of two soluble heme proteins in extract of the photoanaerobeChromatium. Journal of Biological Chemistry235:825–831.

    PubMed  CAS  Google Scholar 

  4. Carter, C. W., Jr., Kraut, J., Freer, S. T., Xuong, N.-H., Alden, R. A., Bartsch, R. G. 1974. Two-angstrom crystal structure of oxidizedChromatium high potential iron protein. Journal of Biological Chemistry249:4212–4225.

    PubMed  CAS  Google Scholar 

  5. Connelly, J. L., Morrison, M., Stotz, E. 1958. Hemins of beef heart muscle. Journal of Biological Chemistry233:743–747.

    PubMed  CAS  Google Scholar 

  6. Cusanovich, M. A., Bartsch, R. G. 1969. A high potential cytochromec fromChromatium chromatophores. Biochimica et Biophysica Acta189:245–255.

    Article  PubMed  CAS  Google Scholar 

  7. Dus, K., Tedro, S., Bartsch, R. G. 1973. The complete amino acid sequence ofChromatium high potential iron sulfur protein. Journal of Biological Chemistry248:7318–7331.

    PubMed  CAS  Google Scholar 

  8. Evans, M. C. W., Lord, A. V., Reeves, S. G. 1974. The detection and characterization by electron-paramagnetic-resonance spectroscopy of iron-sulphur proteins and other electron-transport components in chromatophores from the purple bacteriumChromatium. Biochemical Journal138:177–183.

    PubMed  CAS  Google Scholar 

  9. Fukumori, Y., Yamanaka, T. 1979. Flavocytochromec ofChromatium vinosum. Some enzymatic properties and subunit structure. Journal of Biochemistry85:1405–1415.

    PubMed  CAS  Google Scholar 

  10. Hagihara, B., Tagawa, K., Nozaki, M., Morikawa, I., Yamashita, J., Okunuki, K. 1957. Crystallization of cytochromec from fish. Nature179:249–251.

    Article  PubMed  CAS  Google Scholar 

  11. Hashwa, F., Pfennig, N. 1972. The reductive enzymatic cleavage of thiosulfate. Methods and application. Archives of Microbiology81:36–44.

    CAS  Google Scholar 

  12. Kusai, A., Yamanaka, T. 1973. The oxidation mechanisms of thiosulphate and sulphide inChlorobium thiosulfatophilum. Roles of cytochromec-551 and cytochromec-553. Biochimica et Biophysica Acta325:304–314.

    Article  PubMed  CAS  Google Scholar 

  13. Peck, D. H., Jr., Deacon, T. E., Davidson, J. T. 1965. Studies on adenosine t′-phosphasulfate reductase fromDesulfovibrio desulfuricans andThiobacillus thioparus. I. The assay and purification. Biochimica et Biophysica Acta96:429–446.

    PubMed  CAS  Google Scholar 

  14. Smith, A. J. 1966. The role of tetrathionate in the oxidation of thiosulphate byChromatium sp. strain D. Journal of General Microbiology42:371–380.

    PubMed  CAS  Google Scholar 

  15. Smith, A. J., Lascelles, J. 1966. Thiosulphate metabolism and rhodanese inChromatium sp. Journal of General Microbiology42:357–370.

    PubMed  CAS  Google Scholar 

  16. van Niel, C. B. 1963. A brief survey of the photosynthetic bacteria, pp. 459–467. In: Gest, H., San Pietro, A., Vernon, L. P. (eds.), Bacterial photosynthesis. Yellow Springs, Ohio: Antioch Press.

    Google Scholar 

  17. Yamanaka, T., Fukumori, Y. 1979. A biochemical comparison betweenChlorobium andChromatium flavocytochromesc. In: Yagi, K., Yamano, T. (eds.) Proceedings of the Sixth International Symposium on Flavins and Flavoproteins. Tokyo: Japan Scientific Societies Press. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukumori, Y., Yamanaka, T. A high-potential nonheme iron protein (HiPIP)-linked, thiosulfate-oxidizing enzyme derived fromChromatium vinosum . Current Microbiology 3, 117–120 (1979). https://doi.org/10.1007/BF02602443

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02602443

Keywords

Navigation