Skip to main content
Log in

Depletion of adenosine triphosphate inDesulfovibrio by oxyanions of group VI elements

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Oxyanions of elements from group VI of the periodic table, i.e., analogs of SO4 2−, destroyed adenosine 5′-triphosphate (ATP) in cells of sulfate-respiring bacteria (Desulfovibrio spp.), probably via the ATP sulfurylase reaction. The approximate order of effectiveness was CrO4 2−> MoO4 2−=WO4 2−>SeO4 2−. Cultures of aerobically grown or nitrate-respiring bacteria were less susceptible and with fermentatively grownEscherichia coli the oxyanions even appeared to stimulate ATP levels. The selective depletion of ATP in sulfate-respiring bacteria might provide the basis for a rapid and simple assay of their biomass in mixed cultures or environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Adler, J. 1973. A method for measuring chemotaxis and the use of the method to determine optimum conditions for chemotaxis. Journal of General Microbiology74:77–91.

    PubMed  CAS  Google Scholar 

  2. Akagi, J. M., Campbell, L. L. 1962. Studies on thermophilic sulfate-reducing bacteria. III. Adenosine triphosphate sulfurylase ofClostridium nigrificans andDesulfovibrio desulfuricans. Journal of Bacteriology84:1194–1201.

    PubMed  CAS  Google Scholar 

  3. Cheng, S.-C. 1961. A sensitive assay method for ADP and the determination of ATP, ADP and CrP in single nerve-trunks. Journal of Neurochemistry7:217–277.

    Google Scholar 

  4. Cole, H. A., Wimpenny, J. W. T., Hughes, D. E. 1967. The ATP pool inEscherichia coli. 1. Measurement of the pool using a modified luciferase assay. Biochimica et Biophysica Acta143:445–453.

    Article  PubMed  CAS  Google Scholar 

  5. Drummond, J. P. M., Postgate, J. R. 1959. A note on the enumeration of sulfate-respiring bacteria in polluted water and on their inhibition by chromate. Journal of Applied Bacteriology18:307–311.

    Google Scholar 

  6. Elliott, B. B., Mortenson, L. E. 1975. Transport of molybdate byClostridium pasteurianum. Journal of Bacteriology124:1295–1301.

    PubMed  CAS  Google Scholar 

  7. Furusaka, C. 1961. Sulfate transport and metabolism ofDesulfovibrio desulfuricans. Nature192:427–429.

    Article  PubMed  CAS  Google Scholar 

  8. Holm-Hansen, O., Booth, C. R. 1966. The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnology and Oceanography11:510–519.

    Article  CAS  Google Scholar 

  9. Lee, C. C., Harris, R. F., Williams, J. D., Armstrong, D. E., Syers, J. K. 1971. Adenosine triphosphate in lake sediments. 1. Determination. Proceedings of the Soil Science Society of America35:82–86.

    Article  CAS  Google Scholar 

  10. Mara, D. D., Williams, D. J. A. 1970. The evaluation of media used to enumerate sulfate-reducing bacteria. Journal of Applied Bacteriology33:543–552.

    PubMed  CAS  Google Scholar 

  11. Mathis, R. R., Brown, O. R. 1976. ATP concentration inEscherichia coli during oxygen toxicity. Biochimica et Biophysica Acta440:723–732.

    Article  PubMed  CAS  Google Scholar 

  12. Pankhurst, E. S. 1968. Significance of sulfate-reducing bacteria to the gas industry: A review. Journal of Applied Bacteriology31:179–193.

    Google Scholar 

  13. Pardee, A. B., Prestidge, L. S., Whipple, M. D., Dreyfuss, J. 1966. A binding site for sulfite and its relation to sulfate transport inSalmonella typhimurium. Journal of Biological Chemistry241:3962–3969.

    PubMed  CAS  Google Scholar 

  14. Pasternak, C. A. 1962. Sulfate activation and its control inEscherichia coli andBacillus subtilis. Biochemical Journal85:44–49.

    PubMed  CAS  Google Scholar 

  15. Peck, H. D., Jr. 1959. The ATP-dependent reduction of sulfate with hydrogen in extracts ofDesulfovibrio desulfuricans. Proceedings of the National Academy of Sciences of the United States of America45:701–708.

    Article  PubMed  CAS  Google Scholar 

  16. Peck, H. D., Jr. 1962. Comparative metabolism of inorganic sulfur compounds. Bacteriological Reviews26:67–84.

    PubMed  CAS  Google Scholar 

  17. Postgate, J. R. 1949. Competitive inhibition of sulfate-reduction by selenate. Nature164:670.

    CAS  Google Scholar 

  18. Postgate, J. R. 1952. Competitive and non-competitive inhibitors of bacterial sulfate-reduction. Journal of General Microbiology6:128–142.

    PubMed  CAS  Google Scholar 

  19. Postgate, J. R. 1959. Sulfate-reduction by bacteria. Annual Review of Microbiology13:505–520.

    Article  Google Scholar 

  20. Postgate, J. R. 1966. Media for sulphur bacteria. Laboratory Practice15:1239–1244.

    PubMed  CAS  Google Scholar 

  21. Roy, A. B., Trudinger, P. A. 1970. The biochemistry of inorganic compounds of sulfur. Cambridge: Cambridge University Press.

    Google Scholar 

  22. Tweedie, J. W., Segel, I. H. 1970. Specificity of transport processes for sulfur, selenium and molybdenum anions by filamentous fungi. Biochimica et Biophysica Acta196:95–106.

    Article  PubMed  CAS  Google Scholar 

  23. Weil-Malherbe, H., Green, R. H. 1951. Catalytic effect of molybdate on the hydrolysis of organic phosphate bonds. Biochemical Journal49:286–289.

    PubMed  CAS  Google Scholar 

  24. Wilson, L. G., Bandurski, R. S. 1958. Enzymatic reactions involving sulfate, sulfite, selenate and molybdate. Journal of Biological Chemistry233:975–981.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, B.F., Oremland, R.S. Depletion of adenosine triphosphate inDesulfovibrio by oxyanions of group VI elements. Current Microbiology 3, 101–103 (1979). https://doi.org/10.1007/BF02602440

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02602440

Keywords

Navigation