Skip to main content
Log in

Design and fabriacation of a three-axis multilayer gradient coil for magnetic resonance microscopy of mice

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

There is great interest in the non-destructive capabilities of magnetic resonance microscopy for studying murine models of both disease and normal function; however, these studies place extreme demands on the MR hardware, most notably the gradient field system. We designed, using constrained current minimum inductance methods. and fabricated a complete, unshielded three-axis gradient coil set that utilizes interleaved, multilayer axes to achieve maximum gradient strengths of over 2000 mT m−1 in rise times of less than 50 μs with an inner coil diameter of 5 cm. The coil was wire-wound using a rectangular wire that minimizes the deposited power for a given gradient efficiency. Water cooling was also incorporated into the coil to assist in thermal management. The duty cycle for the most extreme cases of single shot echo planar imaging (EPI) is limited by the thermal response and expressions for maximum rates of image collection are given for burst and continuous modes of operation. The final coil is capable of the collection of single shot EPI images with 6 mm field of view and 94 μm isotropic voxels at imaging rates exceeding 50 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chien KR. Genes and physiology: molecular physiology in genetically engineered animals. J Clin Invest 1996;97:901–9.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson GA, Benveniste H, Engelhardt RT, Qiu H, Hedlund LW. Magnetic resonance microscopy in basic studies of brain structure and function. Ann New York Acad Sci 1997;820:139–48.

    Article  CAS  Google Scholar 

  3. Lester DS, Lyon RC, McGregor GN, Engelhardt RT, Schmued LC, Johnson GA, Johannessen JN. 3-Dimensional visualization of lesions in rat brain using magnetic resonance imaging microscopy. Neuroreport 1999;10:737–41.

    Article  PubMed  CAS  Google Scholar 

  4. Kooy RF, Reyniers E, Verhoye M, Sijbers J, Bakker CE, Oostra BA, Willems PJ, Van Der Linden A. Neuroanatomy of the fragile X knockout mouse brain studied using high resolution magnetic resonance imaging. Eur J Hum Genet 1999;7:526–32.

    Article  PubMed  CAS  Google Scholar 

  5. Grune M, Pillekamp F, Schwindt W, Hoehn M. Gradient echo time dependence and quantitative parameter maps for somatosensory activation in rats at 7 T. Magn Reson Med 199942:118–26.

    Article  PubMed  CAS  Google Scholar 

  6. Fenyes DA, Narayana PA. In vivo diffusion tensor imaging of rat spinal cord with echo planar imaging. Magn Reson Med 1999;42300–6.

    Article  PubMed  CAS  Google Scholar 

  7. Smith BR, Shattuck MD, Hedlund LW, Johnson GA. Time-course imaging of rat embryos in utero with magnetic resonance microscopy. Magn Reson Med 1998;39:673–7.

    Article  PubMed  CAS  Google Scholar 

  8. Arnder L, Zhou X, Cofer G, Hedlund LW, Johnson GA. Magnetic resonance microscopy of the rat carotid artery at 300 MHz. Invest Radiol 1994;29:822–6.

    Article  PubMed  CAS  Google Scholar 

  9. Rose SE, Wilson SJ, Zelaya FO, Crozier S, Doddrell DM. High resolution high field rodent cardiac imaging with flow enhancement suppression. Magn Reson Imaging 1994;12:1183–90.

    Article  PubMed  CAS  Google Scholar 

  10. Slawson SE, Roman BB, Williams DS, Koretsky AP. Cardiac MRI of the normal and hypertrophied mouse heart. Magn Reson Med 1998;39:980–7.

    Article  PubMed  CAS  Google Scholar 

  11. Callaghan PT. Principles of Nuclear Magnetic Resonance Microscopy. New York: Oxford University Press, 1991.

    Google Scholar 

  12. Cremillieux Y, Ding S, Dunn JF. High-resolution in vivo measurements of transverse relaxation times in rats at 7 T. Magn Reson Med 1998;39:285–90.

    Article  PubMed  CAS  Google Scholar 

  13. Meyerand ME, Cremillieux Y, Wadghiri YZ, Azzawi A, Hoopes PJ, Dunn JF. In vivo gradient echo microimaging of rodent spinal cord at 7 T. Magn Reson Med 1998;40:789–91.

    Article  PubMed  CAS  Google Scholar 

  14. Bowtell R, Robyr P. Multilayer gradient coil design. J Magn Reson 1998;131:286–94.

    Article  CAS  PubMed  Google Scholar 

  15. Chu KC, Rutt BK. MR gradient coil heat dissipation. Magn Reson Med 1995;34:125–32.

    Article  PubMed  CAS  Google Scholar 

  16. Chronik BA, Rutt BK. Constrained length minimum inductance gradient coil design. Magn Reson Med 1998;39:270–8.

    Article  PubMed  CAS  Google Scholar 

  17. Reitz JR, Milford FJ, Christy RW. Foundations of Electromagnetic Theory. 4th ed. New York: Addison-Wesley, 1989.

    Google Scholar 

  18. Turner R. Gradient coil design: a review of methods. Magn Reson Imaging 1993;11:902–20.

    Article  Google Scholar 

  19. Parker RS, Zupancic I, Pirs J. Coil system to produce orthogonal, linear magnetic field gradients. J Phys E: Sci Instrum 1973;6:899–900.

    Article  Google Scholar 

  20. Webster DS, Marsden KH. Improved apparatus for the NMR measurement of self-diffusion coefficients using pulsed field gradients. Rev Sci Instrum 1974;45:1232–4.

    Article  Google Scholar 

  21. Odberg G, Odberg L. On the use of a quadrupole coil for NMR spin-echo diffusion studies. J Magn Reson 1974;16:342–7.

    CAS  Google Scholar 

  22. Zupancic I, Pirs J. Coils producing a magnetic field gradient for diffusion measurements with NMR. J Phys E: Sci Instrum 1976;9:79–80.

    Article  Google Scholar 

  23. Cho ZH, Ahn CB, Juh SC, Lee HK, Jacobs RE, Lee S, Yi JH, Jo JM. Nuclear magnetic resonance microscopy with 4-μm resolution: theoretical study and experiment results. Med Phys 1988;15:815–24.

    Article  PubMed  CAS  Google Scholar 

  24. Schoeniger JS, Blackband SJ. The design and construction of a NMR microscopy probe. J Magn Reson B 1994;104:127–34.

    Article  PubMed  CAS  Google Scholar 

  25. Rofe CJ, Van Noort J, Back PJ, Callaghan PT. NMR microscopy using large, pulsed magnetic field gradients. J Magn Reson B 1995;108:125–36.

    Article  CAS  Google Scholar 

  26. Oishi O, Miyajima S. New PFG NMR spectrometer with a rotatable quadrupole coil for the measurement of an anisotropic self-diffusion coefficient tensor. J Magn Reson A 1996;123:64–71.

    Article  PubMed  CAS  Google Scholar 

  27. Snaar JE, Robyr P, Bowtell R. Strong gradients for spatially resolved diffusion measurements. Magn Reson Imaging 1998;16:587–91.

    Article  PubMed  CAS  Google Scholar 

  28. Bowtell R, Crozier S, Beck B, Blackband S. Multi-layer transverse gradient coils. In: Proceedings of the ISMRM, 1999;468.

  29. Bowtell R, Mansfield P. Screened coil designs for NMR imaging in magnets with transverse field geometry. Meas Sci Tech 1990;1:431–9.

    Article  Google Scholar 

  30. Wong EC, Jesmanowicz AJ, Hyde JS. High-resolution, short echo time MR imaging of the fingers and wrist with a local gradient coil. Radiology 1991;181:393–7.

    PubMed  CAS  Google Scholar 

  31. Eccles CD, Crozier S, Roffman W, Doddrell DM, Back P, Callaghan PT. Practical aspects of shielded gradient coil design for localised in vivo NMR spectroscopy and small-scale imaging. Magn Reson Imaging 1994;12:621–30.

    Article  PubMed  CAS  Google Scholar 

  32. Blackband SJ, Chakrabarti I, Gibbs P, Buckley DL, Horsman A. Fingers: three-dimensional MR imaging and angiography with a local gradient coil. Radiology 1994;190:895–9.

    PubMed  CAS  Google Scholar 

  33. Chu KC, Rutt BK. Quadrupole gradient coil design and optimization: a printed circuit board approach. Magn Reson Med 1994;31:652–9.

    Article  PubMed  CAS  Google Scholar 

  34. O'Dell WG, Schoeniger JS, Blackband SJ, McVeigh ER. A modified quadrupole gradient set for use in high resolution MRI tagging. Magn Reson Med 1994;32:246–50.

    Article  PubMed  Google Scholar 

  35. Maier CF, Chu KC, Chronik BA, Rutt BK. A novel transverse gradient coil design for high-resolution MR imaging. Magn Reson Med 1995;34:604–11.

    Article  PubMed  CAS  Google Scholar 

  36. Doty FD. MRI gradient coil optimization. In: Blumler P, Blumich B, Botto R, Fukushima E, editors. Spatially Resolved Magnetic Resonance: Methods, Materials, Medicine, Biology, Rheology, Geology, Ecology, Hardware, New York: Wiley-VCH, 1999:647–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian K. Rutt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chronik, B., Alejski, A. & Rutt, B.K. Design and fabriacation of a three-axis multilayer gradient coil for magnetic resonance microscopy of mice. MAGMA 10, 131–146 (2000). https://doi.org/10.1007/BF02601848

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02601848

Keywords

Navigation