Skip to main content
Log in

A soluble CO- and NO-bindingc-type cytochrome inNeisseria meningitidis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Group BNeisseria meningitidis (SDIC) was grown aerobically in Mueller-Hinton medium to stationary phase and then broken either by sonic oscillation or high pressure extrusion from a French pressure cell. The particulate fraction (345,000×g, 3 h) contained cytochromesc, b, o, and evidence of ana-type. The supernatant fraction contained a solublec-type cytochrome (c 549). The pyridine hemochrome derivatives of acid-acetone-extracted supernatant fractions were shown to be free of other cytochrome types. The solublec cytochrome increased during the growth cycle of the organism, reaching a maximum after cells entered stationary phase, whereas the cellular level of other cytochromes from the particulate fraction started to decline as cells progressed from log into stationary phase. Osmotic shock, as well as other treatments, failed to selectively release the solublec cytochrome from the cell. When untreated, thec 549 in the supernatant fraction remained in a reduced form. While it was not air oxidizable, it was readily oxidizable with K3Fe(CN)6. In the reduced form, thec 549 bound either CO or NO, but in the oxidized form, only NO was bound. The results obtained from this study indicate that the solublec 549 is probably best classified as a cytochromec′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Archibald, F. S., DeVoe, I. W. 1978. Iron inNeisseria meningitidis: Minimum requirements, effects of limitation, and characteristics of uptake. Journal of Bacteriology136:35–48.

    PubMed  CAS  Google Scholar 

  2. DeVoe, I. W. 1976. Egestion of degraded meningococci by polymorphonuclear leukocytes. Journal of Bacteriology125:258–266.

    PubMed  CAS  Google Scholar 

  3. Florkin, M., Stotz, E. H. (eds.). 1973. Enzyme nomenclature, p. 38. In Comprehensive biochemistry, 3rd ed., vol. 13. Amsterdam, New York: Elsevier.

    Google Scholar 

  4. Fujita, T. 1966. Studies on soluble cytochromes inEnterobacteriaceae. II. Cytochromesb-562 andc-550. Journal of Biochemistry60:329–334.

    PubMed  CAS  Google Scholar 

  5. Fujita, T., Sato, R. 1966. Non CO-binding cytochromec in periplasm ofEscherichia coli associated with nitrate-reductase activity. Journal of Biochemistry60:568–577.

    CAS  Google Scholar 

  6. Garrard, W. T. 1971. Selective release of proteins fromSpirillum itersonii by Tris(hydroxymethyl)aminomethane and ethylenediaminetetraacetate. Journal of Bacteriology105:93–100.

    PubMed  CAS  Google Scholar 

  7. Garrard, W. T. 1972. Synthesis, assembly and localization of periplasm cytochromec. Journal of Biological Chemistry247:5935–5943.

    PubMed  CAS  Google Scholar 

  8. Gauthier, D. K., Clark-Walker, G. D., Garrard, W. T., Jr., Lascelles, J. 1970. Nitrate reductase and soluble cytochromec inSpirillum itersonii. Journal of Bacteriology102:797–803.

    CAS  Google Scholar 

  9. Heppel, L. A. 1967. Selective release of enzymes from bacteria. Science156:1451–1455.

    Article  PubMed  CAS  Google Scholar 

  10. Heppel, L. A. 1971. The concepts of periplasmic enzymes, pp. 223–247. In: Rothfield, L. I. (ed.) Structure and function of biological membranes. New York: Academic Press.

    Google Scholar 

  11. Iwasaki, H., Shidora, S. 1969. Crystallization of cytochromec-553 in aerobically grownPseudomonas denitrificans. Journal of Biochemistry66:775–781.

    PubMed  CAS  Google Scholar 

  12. Jacobs, N. J., Wolin, M. J. 1963. Electron-transport system ofVibrio succinogenes. I. Enzymes and cytochromes of the electron-transport system. Biochimica et Biophysica Acta69:18–28.

    Article  PubMed  CAS  Google Scholar 

  13. Jones, C. W., Redfearn, E. R. 1966. Electron transport inAzotobacter vinelandii. Biochimica et Biophysica Acta113:467–481.

    PubMed  CAS  Google Scholar 

  14. Jurtshuk, P., Jr., Marcucci, O. M., McQuitty, D. N. 1975. Tetramethyl-p-phenylenediamine oxidase reaction inAzotobacter vinelandii. Applied Microbiology30:951–958.

    PubMed  CAS  Google Scholar 

  15. Jurtshuk, P., Jr., McQuitty, D. N. 1976. Survey of oxidase-positive and-negative bacteria using a quantitative Kovacs oxidase test. International Journal of Systematic Bacteriology26:127–135.

    Google Scholar 

  16. Jurtshuk, P., Milligan, T. W. 1974. Quantitation of the tetramethyl-p-phenylenediamine oxidase reaction inNeisseria species. Applied Microbiology28:1079–1081.

    PubMed  CAS  Google Scholar 

  17. Jurtshuk, P., Milligan, T. W. 1974. Preliminary characterization studies on theNeisseria catarrhalis respiratory electron transport chain. Journal of Bacteriology120:552–555.

    PubMed  CAS  Google Scholar 

  18. Jurtshuk, P., Mueller, T. J., Acord, W. C. 1975. Bacterial terminal oxidases. CRC Critical Reviews in Microbiology3:399–468.

    PubMed  CAS  Google Scholar 

  19. Kenimer, E. A., Lapp, D. F. 1978. Effects of selected inhibitors on electron transport inNeisseria gonorrhoeae. Journal of Bacteriology134:537–545.

    PubMed  CAS  Google Scholar 

  20. Knowles, C. J., Calcott, P. H., MacLeod, R. A. 1974. Periplasmic CO-bindingc-type cytochrome in a marine bacterium. FEBS Letters49:78–83.

    Article  PubMed  CAS  Google Scholar 

  21. Kornberg, A., Horecker, B. L. 1955. Glucose-6-phosphate dehydrogenase, pp. 323–327. In: Colowick, S. P., Kaplan, N. O. (eds.), Methods in enzymology, vol. 1. New York: Academic Press.

    Chapter  Google Scholar 

  22. Lanyi, J. K. 1968. Studies of the electron transport chain of extremely halophilic bacteria. I. Spectrophotometric identification of the cytochromes ofHalobacterium cutirubrum. Archives of Biochemistry and Biophysics128:716–724.

    Article  PubMed  CAS  Google Scholar 

  23. Lemberg, R., Barrett, J. 1973. Bacterial cytochromes and cytochrome oxidases, pp. 217–325. In: Cytochromes. New York: Academic Press.

    Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry193:265–275.

    PubMed  CAS  Google Scholar 

  25. Meyer, D. J., Jones, C. W. 1973. Distribution of cytochromes in bacteria: Relationship to general physiology. International Journal of Systematic Bacteriology23:459–467.

    Article  Google Scholar 

  26. Moriarty, D. J. W., Nicholas, D. J. D. 1969. Enzymic sulphide oxidation byThiobacillus concretivorus. Biochimica et Biophysica Acta184:114–123.

    PubMed  CAS  Google Scholar 

  27. Niven, D. F., Collins, P. A., Knowles, C. J. 1975. The respiratory system ofChromobacterium violaceum grown under conditions of high and low cyanide evolution. Journal of General Microbiology90:271–285.

    PubMed  CAS  Google Scholar 

  28. Reyn, A. 1974. Gram-negative cocci and coccibacilli, pp. 427–433. In: Buchanan, R. E., Gibbons, N. E. (eds.) Bergey's manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.

    Google Scholar 

  29. Steel, K. J. 1961. The oxidase reaction as a taxonomic tool. Journal of General Microbiology25:297–306.

    Google Scholar 

  30. Taniguchi, S., Kamen, M. D. 1963. On the anomalous interactions of ligands withRhodospirillum haem protein. Biochimica et Biophysica Acta74:438–455.

    Article  PubMed  CAS  Google Scholar 

  31. Tonge, G. M., Knowles, C. J., Harrison, D. E., Higgins, I. J. 1974. Metabolism of one carbon compounds: Cytochromes of methane- and methanol-utilizing bacteria. FEBS Letters44:106–110.

    Article  PubMed  CAS  Google Scholar 

  32. Weston, J. A., Knowles, C. J. 1973. A soluble CO-bindingc-type cytochrome from the marine bacteriumBeneckea natriegens. Biochimica et Biophysica Acta305:11–18.

    Article  PubMed  CAS  Google Scholar 

  33. Weston, J. A., Knowles, C. J. 1974. The respiratory system of the marine bacteriumBeneckea natriegens. I. Cytochrome composition. Biochimica et Biophysica Acta333:228–236.

    Article  CAS  PubMed  Google Scholar 

  34. Weston, J. A., Knowles, C. J. 1974. The respiratory system of the marine bacteriumBeneckea natriegens. Oxidation-reduction potentials of the cytochromes. FEBS Letters43:235–238.

    Article  PubMed  CAS  Google Scholar 

  35. White, D. C., Sinclair, P. R. 1971. Branched electron-transport systems in bacteria. Advances in Microbial Physiology5:173–211.

    Article  PubMed  CAS  Google Scholar 

  36. Winter, D. B., Morse, S. A. 1975. Physiology and metabolism of pathogenicNeisseria: Partial characterization of the respiratory chain ofNeisseria gonorrhoeae. Journal of Bacteriology123:631–636.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, E.K.C., DeVoe, I.W. & Gilchrist, J.E. A soluble CO- and NO-bindingc-type cytochrome inNeisseria meningitidis . Current Microbiology 2, 201–206 (1979). https://doi.org/10.1007/BF02601712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02601712

Keywords

Navigation