Advertisement

Bulletin Volcanologique

, Volume 40, Issue 1, pp 23–38 | Cite as

Nuée ardente eruption from the foot of a dacite lava flow, Santiaguito volcano, Guatemala

  • W. I. RoseJr.
  • T. Pearson
  • S. Bonis
Article

Abstract

Field observations of the zone affected by a small nuée ardente which issued from Santiaguito volcanic dome on 15 September 1973, have established clearly that the eruption came from the distal end of a blocky dacite lava flow. This emphasizes that such eruptions need not be related to an underground magma storage.

The Santiaguito nuée ardente, like previous similar eruptions, resulted in a small avalanche deposit, strictly confined to a river bed, and a broad « hurricane cloud » (ground surge?) deposit, which came in advance of the avalanche material.

Grain size analyses of the Santiaguito nuée ardente avalanche deposit and similar deposits from recent activity at Arenal Volcano, Costa Rica and Fuego Volcano, Guatemala show generally similar results: mean grain sizes in the range of 0.5–1.0 mm and standard deviation of 2 Φ units. The deposits are slightly better sorted than most published descriptions of ignimbrites, and SEM study shows they include more than 50% of non-vesicular material (including crystal and lithic fragments). The presence of so much non-vesicular material in the nuée deposit (in contrast to its paucity in many ignimbrites) probably is caused by the higher crystallinity and lower volatile content of the parent magma; one effect of this material is probably to render the nuée ardente less mobile than its ignimbrite counterpart, and quite possibly no more mobile than a cold rock avalanche.

The observation of highly vesicular particles with ruptured surface vesicles in the Santiaguito nuée materials supports hypotheses that employ active vesiculation as part of the mechanism of movement for some nuée ardentes.

Keywords

Lava Flow Pyroclastic Flow Grain Size Analysis Flow Front Base Surge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bond, A. andR. S. J. Sparks, 1976,The Minoan Eruption of Santorini, Grece. J. Geol. Soc. London,132, p. 1–16.Google Scholar
  2. Francis, P. W., M. J. Roobol, G. P. L. Walker, P. R. Gobbald andM. Coward, 1974,The San Pedro and San Pablo Volcanoes of Northern Chile and Their Hot Avalanche Deposits. Geol. Rundsch.,63, pp. 357–388.CrossRefGoogle Scholar
  3. Inman, D. L., 1952,Measures for Describing the Size Distribution of Sediments. J. Sediment. Pet.,22, p. 125–145.Google Scholar
  4. Johnson, R. W., R. A. Davies andA. J. R. White, 1972,Ulawun Volcano, New Britain, Australia Bur. Min. Res., Geol., Geophys. Bull.,142, pp. 42.Google Scholar
  5. Lacroix, A., 1904,Le Montagne Pelée et ses eruptions. Paris, Masson et Cie.Google Scholar
  6. MacDonald, G. A., 1972,Volcanoes. Englewood Cliffs, N. J., Prentice Hall, pp. 510.Google Scholar
  7. McTaggart, K. C., 1960,The Mobility of Nuées Ardentes. Amer. J. Sci.,258, p. 369–382.CrossRefGoogle Scholar
  8. Melson, W. G. andR. Saenz, 1973,Volume, Energy and Cyclicity of Eruptions of Arenal Volcano, Costa Rica. Bull. Volcanol.,37, p. 416–437.CrossRefGoogle Scholar
  9. Moore, J. G. andW. G. Melson, 1969,Nuées Ardentes of the 1968 Eruption of Mayon Volcano, Philippines. Bull. Volcanol.,33, p. 600–620.CrossRefGoogle Scholar
  10. Muenow, D. W., 1973,High Temperature Mass Spectrometric Gas-release Studies of Hawaiian Volcanic Glass: Pele’s Tears. Geochim. Cosmochim. Acta,37, p. 1551–1562.CrossRefGoogle Scholar
  11. Murai, I., 1961,A Study of the Textural Characteristics of Pyroclastic Flow Deposits in Japan. Bull. Earthq. Res. Inst. Univ. Tokyo,39, p. 133–254.Google Scholar
  12. Perret, F. A., 1937,The Eruption of Mt. Pelée, 1929–1932. Carnegie Inst. Washington Publ458, pp. 126.Google Scholar
  13. Rose, W. I. J., 1972,Santiaguito Volcanic Dome, Guatemala. Geol. Soc. Amer. Bull.,83, p. 1413–1434.CrossRefGoogle Scholar
  14. —————, 1973a,Pattern and Mechanism of Volcanic Activity at the Santiaguito Volcanic Dome, Guatemala. Bull. Volcanol.,37, p. 73–94.CrossRefGoogle Scholar
  15. —————, 1973b,Nuée Ardente from Santiaguito Volcano, April 1973. Bull. Volcanol.,37, p. 365–370.CrossRefGoogle Scholar
  16. ————— andS. B. Bonis, 1976,Magma Composition Changes during the 1974 Eruption of Volcano Fuego: Result of Vertical Variation of H 2 O during Shallow Intratelluric Crystal Fractionation. Trans. Amer. Geophys. Un.,57, p. 346.Google Scholar
  17. Sheridan, M. F., 1971,Particle Size Characteristics of Pyroclastic Tuff. J. Geophys. Res.,76, p. 5627–5634.CrossRefGoogle Scholar
  18. —————, andR. G. Updike, 1975,Sugarloaf Mountain Tephra, a Pleistocene Rhyolitic Deposit of Base Surge Origin in Northern Arizona. Geol. Soc. Amer. Bull.,86, p. 571–581.CrossRefGoogle Scholar
  19. Sparks, R. S. J., 1975,Stratigraphy and Geology of the Ignimbrites of Vulsini Volcano, Central Italy. Geol. Rundsh.,64, p. 497–523.CrossRefGoogle Scholar
  20. —————, 1976,Grain Size Variations in Ignimbrites and Implications for the Transport Pyroclastic Flows. Sedimentology,23, pp. 147–188.CrossRefGoogle Scholar
  21. ————— andG. P. L. Walker, 1973,Products of Ignimbrite Eruptions. Geology,1, pp. 115–118.CrossRefGoogle Scholar
  22. Taylor, G. A., 1958,The 1951 Eruption of Ht. Lamington, Papua. Australia Bur. Min Res. Geol. and Geophys., Bull. 38, 117 pp.Google Scholar
  23. Walker, G. P. L., 1971,Size Characteristics of Pyroclastic Tuffs. J. Geol.,79, p. 696–714.CrossRefGoogle Scholar
  24. —————, 1972,Crystal Concentration in Ignimbrites. Contr. Mineral Petrol.,36, p. 135–146.CrossRefGoogle Scholar
  25. Woodruff, L. G. andW. L. Rose, Jr., 1976,Pattern of Historic Activity at Volcán Fuego, Guatemala. Trans. Amer. Geophys. Un.,57, p. 345.Google Scholar

Copyright information

© Stabilimento Tipografico Francesco Giannini & Figli 1976

Authors and Affiliations

  • W. I. RoseJr.
    • 1
  • T. Pearson
    • 1
  • S. Bonis
    • 2
  1. 1.Michigan Technological UniversityHoughtonUSA
  2. 2.Instituto Geográfico NacionalGuatemala

Personalised recommendations