Abstract
We develop here the theory of (skew-) hermitian forms over division algebras over the real function field and its completions. In particular, a local and local-global classification for forms of all types are given and some Hasse principles are proved.
This is a preview of subscription content, access via your institution.
References
[B] Bartels, H.-J.:Invariaten hermiteschen Formen über Schiefkörpern, Math. Annalen 215, 269–288 (1975)
[D] Draxl, P.:Skew fields, London Math. Soc. Lec. Notes, Cambridge University Press, 1983
[E] Elman, R.:Rund forms over real algebraic function fields in one variable, Proc. Amer. Math. Soc. 41, 431–436 (1973)
[E-L] Elman, R. and Lam, T. Y.:Classification theorems for quadratic forms over fields, Comm. Math. Helv. 49, 373–381 (1974)
[G] Greenberg, M.:Lectures on forms in many variables, Benjamin, 1969
[H-J] Hsia, J. H. and Johnson, R. P.:Round and Pfister forms over R(t), Pacific J. Math. 49, 101–108 (1973)
[J] Jacobson, N.:Simple Lie algebras over a field of characteristic zero, Duke Math. J. 4, 534–551 (1938)
[Ja] Janchevski, V. I.:Simple algebras with involution and unitary groups, Mat. Sb. 22, 372–385 (1974)
[K] Kneser, M.:Lecture on Galois cohomology of classical groups, Tata Ins. Fund. Research, Bombay, 1969
[Kn] Knight, J.:Quadratic forms over R(t), Proc. Cambridge Philos. Soc. 62, 197–205 (1966)
[L] Lam, T. Y.:The algebraic theory of quadratic forms, Benjamin Reading, Mass., 1973
[Le] Lewis, D. W.:Quaternionic Skew-Hermitian Forms over a Number Field, J. Algebra 74, 232–240 (1982)
[M-H] Milnor, J. W. and Husemoler, D.:Symmetric billinear forms, Berlin-Heidelberg-New York, Springer-Verlag, 1973
[O] O'Meara, O. T.:Introduction to quadratic forms, Berlin-Heidelberg-New York, Springer, 1962
[P] Pierce, R.:Associative algebras, GTM. no 88, Springer-Verlag 1982
[P1] Pollak, B.:Orthogonal groups over R((t)), Amer. J. Math. XC, 214–230 (1968)
[P2] Pollak, B.: The equation tat=b in a quaternionalgebra, Duke Math. J. 27, 261–271 (1961)
[Sch1] Scharlau, W.:Klassifikation hermiteschen Formen über lokalen Körpern, Math. Annalen 186, 201–208 (1970)
[Sch2] Scharlau, W.:Quadratic and Hermitian forms, Berlin-Heidelberg-New York, Springer-Verlag, 1985
[Se1] Serre, J.-P.:Local fields, GTM n. 67, Springer-Verlag, 1979
[Se2] Serre, J.-P.:Cohomologie Galoisienne, LNM No. 5, Springer-Verlag 1965
[Ta] Tasaka, T.:On the quasi-split simple algebraic groups defined over an algebraic number field, J. Fac. Sci. Univ. Tokyo, Sec. IA, 20, 147–168 (1968)
[Ti] Tits, J.:Classification of algebraic semisimple groups, in: Proc. Sym. Pure Mathematics v.IX, 33–62 (1966)
[Ts] Tsukamoto, T.:On the local theory of quaternionic antihermitian forms, J. Math. Soc. Jap. 13, 387–400 (1961)
[W1] Witt, E.:Zerlegung reeller algebraischer Funktionen in Quadrate. Schiefkörper über reellem Funktionenkörper, J. Crelle 171, 4–11 (1934)
[W2] Witt, E.:Theorie der quadratischen Formen in beliebigen Körpern, J. Crelle 176, 31–44 (1937)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Thang, N.Q. Hermitian forms over division algebras over real function fields. Manuscripta Math 78, 9–35 (1993). https://doi.org/10.1007/BF02599298
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02599298
Keywords
- Quadratic Form
- Division Algebra
- Twisted Space
- Hermitian Form
- Global Field