Peridotite-CO2-H2O and the low-velocity zone

Abstract

The properties of the seismic low-velocity zone are consistent with incipient melting of mantle peridotite. Vapor-absent melting of amphibole-peridotite has been used to model the low-velocity zone, but evidence that CO2 exists in the upper mantle indicates that peridotite-CO2-H2O would be a better model. The divariant solidus surface for peridodite-CO2-H2O is traversed by a series of univariant lines marking the intersections of divariant subsolidus reactions involving dolomite or magnesite, amphibole, or phlogopite (other hydrous minerals are neglected in this treatment), or combinations of these. The vapor phase compositions are buffered to specific values, which limits the range of vapor compositions that can coexist with peridotite at various pressures. Below about 30 kbar, the vapor phase is buffered by the melting of amphibole-peridotite, with composition ranging from H2O to high CO2/H2O. Above about 25 kbar, the vapor phase is buffered by the melting of dolomite-peridotite, with composition ranging from CO2 to high H2O/CO2 at pressures above 30 kbar. The buffered curve for phlogopite-peridotite intersects the dolomite-peridotite curve, generating another line for phlogopite-dolomite-peridotite; the strong buffering capacity of dolomite forces the vapor on this line to high H2O/CO2. Near the buffered curve for the solidus of partly carbonated peridotite there is a temperature maximum on the peridotite-vapor solidus surface. On the CO2 side of the maximum, above 26 kbar, CO2/H2O is greater in liquid than in vapor; on the H2O side of this maximum, and at all pressures below 26 kbar, CO2/H2O is greater in vapor than in liquid. The suboccanic low-velocity zone is caused by incipient melting of amphibole-peridotite in the presence of vapor with high CO2/H2O, with generation of forsterite-normative liquid. The subcontinental low-velocity zone, where present, is probably caused by incipient melting of dolomite-peridotite, or phlogopite-dolomite-peridotite, either with H2O-rich vapor or without vapor, with the generation of CO2-rich, alkalic, SiO2-poor liquid (larnite-normative) that in extreme conditions may be carbonatitic.

This is a preview of subscription content, access via your institution.

References

  1. Anderson, D. L., andSammis, C., 1970,Partial Melting and the Low-Velocity Zone. Phys. Earth. Planet. Interiors, 3, p. 41–50.

    Article  Google Scholar 

  2. Boettcher, A. L., 1973,Volcanism and Orogenic Belts — the Origin of Andesites. Tectonophysics,17, p. 223–240.

    Article  Google Scholar 

  3. Boyd, F. R., England, J. L., andDavis, B. T. C., 1964,Effects of Pressure on the Melting and Polymorphism of Enstatite. Jour. Geophys. Res.,69, p. 2101–2109.

    Google Scholar 

  4. Clark, S. P., andRingwood, A. E., 1964,Density Distribution and Constitution of the Mantle. Review Geophys.,2, p. 35–88.

    Google Scholar 

  5. Eggler, D. H., 1974,Effect of CO2on the Melting of Peridotite. Carnegie Inst. Washington Yearbook,73, p. 215–224.

    Google Scholar 

  6. —————, 1975,CO 2 as a Volatile Component of the Mantle: the System Mg 2 SiO 4-H 2 O-CO 2. Phys. Chem. of the Earth,9, p. 869–881.

    Article  Google Scholar 

  7. —————, 1976,Does CO 2 Cause Partial Melting in the Low-Velocity Layer of the Mantle? Geology,4, p. 69–72.

    Article  Google Scholar 

  8. —————, 1977, The Principle of the Zone of Invariant Vapor Composition: an Example in the System CaO-MgO-SiO2-CO2-H2O and Implications for the Mantle Solidus. Carnegie Inst. Washington Yearbook,76, p. 428–435.

    Google Scholar 

  9. —————, 1978,The Effect of CO 2 Upon Partial Melting of Peridotite in the System Na 2 O-CaO-Al 2 O 3-MgO-SiO 2-CO 2 to 35 kb, with an Analysis of Melting in a Peridotite-H 2 O-CO 2 System. Amer. Jour. Sci.,278, p. 305–343.

    Article  Google Scholar 

  10. —————, andHolloway, J. R., 1976,Stability of Carbonate Minerals in a Hydrous Mantle. Carnegie Inst. Washington Yearbook,75, p. 631–636.

    Google Scholar 

  11. Ellis, D. E., andWyllie, P. J., 1979a, Carbonation, Hydration, and Melting Relations in the System MgO-H2O-CO2at Pressures up to 100 Kilobars. Amer. Miner.,64, p. 32–40.

    Google Scholar 

  12. -----, 1979b,A Model of Phase Relations in the System MgO-SiO 2-H 2 O-CO 2 and Prediction of the Compositions of Liquids Coexisting with Forsterite and Enstatite. Proc. of 2nd Intern. Kimberlite Conference, Santa Fe, 1977, p. 313–318.

  13. Green, D. H., 1973,Experimental Melting Studies on a Model Upper Mantle Composition at High Pressure under Water-undersaturated Conditions. Earth and Planet. Sci. Lett.,19, p. 37–53.

    Article  Google Scholar 

  14. —————, 1976,Experimental Testing of « Equilibrium » Partial Melting of Peridotite under Water-saturated, High-pressure Conditions. Can. Miner.,14, p. 255–268.

    Google Scholar 

  15. Green, H. W., II, 1972,A CO2Charged Asthenosphere. Nature Phys. Sci.,238, p. 2–5.

    Article  Google Scholar 

  16. Greewood, H. J., 1975,Buffering of Pore Fluids by Metamorphic Reactions. Am. Jour. Sci., 275, p. 573–593.

    Article  Google Scholar 

  17. Holloway, J. R., andEggler, D. H., 1976,Fluid-absent Melting of Peridotite Containing Phlogopite and Dolomite. Carnegie Inst. Washington Yearbook, 75, p. 636–639.

    Google Scholar 

  18. Kerrick, D. M., 1974.Review of Metamorphic Mixed Volatile (H2O-CO2)Equilibria. Amer. Miner.,59, p. 729–762.

    Google Scholar 

  19. King, B. C., 1965,Petrogenesis of the Alkaline Igneous Rock Suites of the Volcanic and Intrusive Centres of Eastern Uganda. J. Petrol.,6, p. 67–100.

    Google Scholar 

  20. Kushiro, I., 1972,Effect of Water on the Composition of Magmas Formed at High Pressures. Jour. Petrol.,13, p. 311–334.

    Google Scholar 

  21. —————, andAkimoto, S., 1968,Melting of a Peridotite Nodule at High Pressures and High Water Pressures. Jour. Geophys. Res.,73, p. 6023–6029.

    Article  Google Scholar 

  22. Lambert, I. B., andWyllie, P. J., 1968,Stability of Hornblende and a Model for the Low Velocity Zone. Nature,219, p. 1240–1241.

    Article  Google Scholar 

  23. Millhollen, G. L., Irving, A. J., andWyllie, P. J., 1974,Melting Interval of Peridotite with 6.7% Water to 30 Kilobars. Jour. Geol.,82, p. 575–587.

    Google Scholar 

  24. Mysen, B. O., andBoettcher, A. L., 1975,Melting of a Hydrous Mantle. Jour. Petrol.,16, p. 520–548, p. 549-593.

    Google Scholar 

  25. Nehru, C. E., andWyllie, P. J., 1975,Compositions of Glasses from St. Paul’s Peridotite Partially Melted at 20 Kilobars. Jour. Geol.,83, p. 455–471.

    Google Scholar 

  26. Ringwood, A. E., 1966,Mineralogy of the Mantle. In:Advances in Earth Sciences, P. M. Hurley, editor, p. 357–399, M.I.T. Press. Cambridge, Massachusetts, 502 pp.

    Google Scholar 

  27. —————, 1969,Composition and Evolution of the Upper Mantle. In:The Earth’s Crust and Upper Mantle, P. J. Hart, ed., p. 1–17. Geophys. Monograph 13, 735 p. Amer. Geophys Union, Washington, DC.

    Google Scholar 

  28. Solomon, S. C., 1976,Geophysical Constraints on Radial and Lateral Temperature Variations in the Upper Mantle. Amer. Miner.,61, p. 788–803.

    Google Scholar 

  29. Wendlandt, R., 1977,The System K2O-MgO-Al2O3-SiO2-H2O-CO2:Stability of Phlogopite as a Function of Vapor Composition at High Pressures and Temperatures. Carnegie Inst. Washington Yearbook,76, p. 441–448.

    Google Scholar 

  30. Wyllie, P. J., 1971,The Dynamic Earth: a Textbook in Geosciences. John Wiley and Sons., Inc., New York, 416 pp.

    Google Scholar 

  31. —————, 1977,Mantle Fluid Compositions Buffered by Carbonates in Peridotite-CO 2-H 2 O. J. Geol.,85, p. 187–207.

    Article  Google Scholar 

  32. —————, 1978,Mantle Fluid Compositions Buffered in Peridotite-CO 2-H 2 O by Carbonates, Amphibole, and Phlogopite. Jour. Geol.,86, p. 687–713.

    Article  Google Scholar 

  33. —————, andHuang, W. L., 1975,Peridotite, Kimberlite, and Carbonatite Explained in the System CaO-MgO-SiO 2-CO 2. Geology,3, p. 621–624.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wyllie, P.J. Peridotite-CO2-H2O and the low-velocity zone. Bull Volcanol 41, 670–683 (1978). https://doi.org/10.1007/BF02597393

Download citation

Keywords

  • Dolomite
  • Hydrous Mineral
  • Solidus Surface
  • Carnegie Inst
  • Incipient Melting