Skip to main content
Log in

Noninvasive tests for diagnosing the presence and extent of coronary artery disease

Exercise electrocardiography, thallium scintigraphy, and radionuclide ventriculography

  • Clinical Review
  • Published:
Journal of General Internal Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bruce RA. Exercise testing of patients with coronary heart disease. Ann Clin Res 1971;3:323–32

    PubMed  CAS  Google Scholar 

  2. Sheffield LT. Exercise stress testing. In: Braunwald E, ed., Heart disease: a textbook of cardiovascular medicine. Philadelphia: W. B. Saunders, 1984;258–78

    Google Scholar 

  3. Rochmis P, Blackburn H. Exercise tests: a survey of procedures, safety, and litigation experience in approximately 170,000 tests. JAMA 1971;217:1061–6

    Article  PubMed  CAS  Google Scholar 

  4. Harvey RM, Doyle EF, Ellis K, et al. Major changes made by the Criteria Committee of the New York Heart Association. Circulation 1974;49:390

    Google Scholar 

  5. The Criteria Committee of the New York Heart Association, Inc. Diseases of the heart and blood vessels; nomenclature and criteria for diagnosis. 6th ed. Boston: Little, Brown, 1964

    Google Scholar 

  6. Campeau L. Grading of angina pectoris. Circulation 1975;54:522

    Google Scholar 

  7. Goldman L, Hashimoto B, Cook EF, Loscalzo A. Comparative reproducibility and validity of systems for assessing caradiovascular functional class: advantages of a new specific activity scale. Circulation 1981;64:1227–34

    PubMed  CAS  Google Scholar 

  8. Goldman L, Cook EF, Mitchell N, Flatley M, Sherman H, Cohn P. Pitfalls in the serial assessment of cardiac functional status. J Chronic Dis 1982;35:763–71

    Article  PubMed  CAS  Google Scholar 

  9. Patterson JA, Naughton J, Pietras RJ, Gunnar RM. Treadmill exercise in assessment of the functional capacity of patients with cardiac disease. Am J Cardiol 1972;30:757–62

    Article  PubMed  CAS  Google Scholar 

  10. Goldschlager N, Selzer A, Cohn K. Treadmill stress tests as indicators of presence and severity of coronary artery disease. Ann Intern Med 1976;85:277–86

    PubMed  CAS  Google Scholar 

  11. Longhurst JC, Kraus WL. Exercise-induced ST elevation in patients without myocardial infarction. Circulation 1979;60:616–29

    PubMed  CAS  Google Scholar 

  12. Bonoris PE, Greenberg PS, Castellanet MJ, Ellestad MH. Significance of changes in R wave amplitude during treadmill stress testing: angiographic correlation. Am J Cardiol 1978;41:846–51

    Article  PubMed  CAS  Google Scholar 

  13. Califf RM, McKinnis RA, McNeer JF, et al. Prognostic value of ventricular arrhythmias associated with treadmill exercise testing in patients studied with cardiac catheterization for suspected ischemic heart disease. J Am Coll Cardiol 1983;2:1060–7

    Article  PubMed  CAS  Google Scholar 

  14. Goldman L, Cook EF, Mitchell N, et al. Incremental value of the exercise test for diagnosing the presence or absence of coronary artery disease. Circulation 1982;66:945–53

    PubMed  CAS  Google Scholar 

  15. Weiner DA, McCabe CH, Cutler SS, Ryan TJ. Decrease in systolic blood pressure during exercise testing: reproducibility, response to coronary bypass surgery and prognostic significance. Am J Cardiol 1982;49:1627–31

    Article  PubMed  CAS  Google Scholar 

  16. Holman BL. Cardiac imaging: A Nuclear cardiology. In: Braunwald E, ed., Heart disease: a textbook of cardiovascular medicine. 2nd ed. Philadelphia: W. B. Saunders, 1984, 351–399.

    Google Scholar 

  17. Borer JS, Kent KM, Bacharach SL, et al. Sensitivity, specificity and predictive accuracy of radionuclide cineangiography during exercise in patients with coronary artery disease. Comparison with exercise electrocardiography. Circulation 1979;60:572–80

    PubMed  CAS  Google Scholar 

  18. Berger HJ, Reduto LA, Johnstone DE, et al. Global and regional left ventricular response to bicycle exercise in coronary artery disease. Assessment by quantitative radionuclide angiocardiography. Am J Med 1979;66:13–21

    Article  PubMed  CAS  Google Scholar 

  19. Jones RH, McEwan P, Newman GE, et al. Accuracy of diagnosis of coronary artery disease by radionuclide measurement of left ventricular function during rest and exercise. Circulation 1981;64:586–601

    PubMed  CAS  Google Scholar 

  20. Austin EH, Cobb FR, Coleman RE, Jones RH. Prospective evaluation of radionuclide angiocardiography for the diagnosis of coronary artery disease. Am J Cardiol 1982;50:1212–6

    Article  PubMed  CAS  Google Scholar 

  21. Gibbons RJ, Lee KL, Cobb F, Jones RH. Ejection fraction response to exercise in patients with chest pain and normal coronary arteriograms. Circulation 1981;64:952–7

    PubMed  CAS  Google Scholar 

  22. Goldman L, Cook EF. The decline in ischemic heart disease mortality rates. Ann Intern Med 1984;101:825–36

    PubMed  CAS  Google Scholar 

  23. Goldman L, Mudge GH Jr, Cook EF. The changing “natural history” of symptomatic coronary artery disease: basis versus bias. Am J Cardiol 1983;51:449–54

    Article  PubMed  CAS  Google Scholar 

  24. Beta-Blocker Heart Attack Trial Research Group. A randomized trial of propranolol in patients with acute myocardial infarction: I. Mortality results. JAMA 1982;247:1707–14

    Article  Google Scholar 

  25. The Norwegian Multicenter Study Group. Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction. N Engl J Med 1981;305:801–7

    Google Scholar 

  26. Takaro T, Hultgren HN, Lipton MJ, et al. The VA cooperative randomized study of surgery for coronary arterial occlusive disease. II. Subgroup with significant left main lesions. Circulation 1976;54(suppl III):III 107–17

    Google Scholar 

  27. European Coronary Surgery Study Group. Long-term results of prospective randomised study of coronary arterly bypass surgery in stable angina pectoris. Lancet 1982;2:1173–80

    Google Scholar 

  28. The Veterans Administration Coronary Artery Bypass Surgery Cooperative Study Group. Eleven-year survival in the Veterans Administration randomized trial of coronary bypass surgery for stable angina. N Engl J Med 1984;21:1333–9

    Google Scholar 

  29. Passamani E, Davis KB, Gillespie MJ, Killip T, CASS Principal Investigators and Their Associates. A randomized trial of coronary artery bypass surgery. Survival of patients with a low ejection fraction. N Engl J Med 1985;312:1665–71.

    Article  PubMed  CAS  Google Scholar 

  30. Goldschlager N. Use of the treadmill test in the diagnosis of coronary artery disease in patients with chest pain. Ann Intern Med 1982;97:383–8

    PubMed  CAS  Google Scholar 

  31. Philbrick JT, Horwitz RI, Feinstein AR. Methodologic problems of exercise testing for coronary artery disease: groups, analysis and bias. Am J Cardiol 1980;46:807–12

    Article  PubMed  CAS  Google Scholar 

  32. Lee TH, Cook, EF, Goldman L. Prospective evaluation of a clinical and exercise-test model for the prediction of left main coronary artery disease. Med Decis Making. In press, 1986 (Jul–Aug)

  33. Blumenthal DS, Weiss JL, Mellits ED, Gerstenblith G. The predictive value of a strongly positive stress test in patients with minimal symptoms. Am J Med 1981;70:1005–10

    Article  PubMed  CAS  Google Scholar 

  34. Cheitlin MD, Davia JE, de Castro CM, Barrow EA, Anderson WT. Correlation of “critical” left coronary artery lesions with positive submaximal exercise tests in patients with chest pain. Am Heart J 1975;89:305–10

    Article  PubMed  CAS  Google Scholar 

  35. Cohen MV, Gorlin R. Main left coronary artery disease. Clinical experience from 1964–1974. Circulation 1975;52:275–85

    PubMed  CAS  Google Scholar 

  36. Dash H, Massie BM, Botvinick EH, Brundage BH. The noninvasive identification of left main and three-vessel coronary artery disease by myocardial stress perfusion scintigraphy and treadmill exercise electrocardiography. Circulation 1979;60:276–84

    PubMed  CAS  Google Scholar 

  37. Goldschlager N, Selzer A, Cohn K. Treadmill stress tests as indicators of the presence and severity of coronary artery disease. Ann Intern Med 1976;85:277–86

    PubMed  CAS  Google Scholar 

  38. Levites R, Anderson GJ. Detection of critical coronary lesions with treadmill exercise testing: fact or fiction? Am J Cardiol 1978;42:533–8

    Article  PubMed  CAS  Google Scholar 

  39. McNeer JF, Margolis JR, Lee KL, et al. The role of the exercise test in the evaluation of patients for ischemic heart disease. Circulation 1978;57:64–70

    PubMed  CAS  Google Scholar 

  40. Nixon JV, Lipscomb K, Blomqvist CG, Shapiro W. Exercise testing in men with significant left main coronary disease. Br Heart J 1979;42:410–5

    PubMed  CAS  Google Scholar 

  41. Nygaard TW, Gibson RS, Ryan JM, et al. Prevalence of high-risk thallium-201 scintigraphic findings in left main coronary artery stenosis: comparison with patients with multiple- and single-vessel coronary artery disease. Am J Cardiol 1984;53:462–9

    Article  PubMed  CAS  Google Scholar 

  42. Gitler B, Fishbach M, Steingart RM. Use of electrocardiographic-thallium exercise testing in clinical practice. J Am Coll Cardiol 1984;3:262–71

    Article  PubMed  CAS  Google Scholar 

  43. Hung J, Chaitman BR, Lam J, et al. Noninvasive diagnostic test choices for the evaluation of coronary artery disease in women: a multivariate comparison of cardiac fluoroscopy, exercise electrocardiography and exercise thallium myocardial perfusion scintigraphy. J Am Coll Cardiol 1984;4:8–16

    Article  PubMed  CAS  Google Scholar 

  44. Melin JA, Piret LJ, Vanbutsele RJM, et al. Diagnostic value of exercise electrocardiography and thallium myocardial scintigraphy in patients without previous myocardial infarction: a Bayesian approach. Circulation 1981;63:1019–24

    PubMed  CAS  Google Scholar 

  45. Patterson RE, Horowitz, SF, Eng C, et al. Can exercise electrocardiography and thallium-201 myocardial imaging exclude the diagnosis of coronary artery disease? Bayesian analysis of the clinical limits of exclusion and indications for coronary angiography. Am J Cardiol 1982;49:1127–35

    Article  PubMed  CAS  Google Scholar 

  46. Patterson RE, Eng C, Horowitz SF, Gorlin R, Goldstein SR. Bayesian comparison of cost-effectiveness of different clinical approaches to diagnose coronary artery disease. J Am Coll Cardiol 1984;4:278–89

    Article  PubMed  CAS  Google Scholar 

  47. Ritchie JL, Zaret BL, Strauss HW, et al. Myocardial imaging with thallium-201: a multicenter study in patients with angina pectoris or acute myocardial infarction. Am J Cardiol 1978;43:345–50

    Article  Google Scholar 

  48. Okada RD, Boucher CA, Strauss HW, Pohost GM. Exercise radionuclide imaging approaches to coronary artery disease. Am J Cardiol 1980;46:1188–204

    Article  PubMed  CAS  Google Scholar 

  49. Bodenheimer MM, Banka VS, Fooshee CM, Helfant RH. Comparative sensitivity of the exercise electrocardiogram, thallium imaging and stress radionuclide angiography to detect the presence and severity of coronary heart disease. Circulation 1979;60:1270–8

    PubMed  CAS  Google Scholar 

  50. Rozanski A, Diamond GA, Berman D, Forrester JS, Morris D, Swan HJC. The declining specificity of exercise radionuclide ventriculography. N Engl J Med 1983;309:518–22

    Article  PubMed  CAS  Google Scholar 

  51. Pryor DB, Harrell FE Jr, Lee KL, Califf RM, Rosati RA. Estimating the likelihood of significant coronary artery disease. Am J Med 1983;75:771–80

    Article  PubMed  CAS  Google Scholar 

  52. Diamond GA, Staniloff HM, Forrester JS, Pollock BH, Swan HJC. Computer-assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease. J Am Coll Cardiol 1983;1:444–55

    Article  PubMed  CAS  Google Scholar 

  53. McNeil BJ, Keeler E, Adelstein SJ. Primer on certain elements of medical decision making. N Engl J Med 1975;293:211–15

    Article  PubMed  CAS  Google Scholar 

  54. Ranschoff DF, Feinstein AR. Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. N Engl J Med 1978;299:926–30

    Article  Google Scholar 

  55. Weintraub WS, Madeira SW, Bodenheimer MM, et al. Critical analysis of the application of Bayes’ theorem to sequential testing in the noninvasive diagnosis of coronary artery disease. Am J Cardiol 1984;54:43–9

    Article  PubMed  CAS  Google Scholar 

  56. Hlatky M, Botvinick E, Brundage B. Diagnostic accuracy of cardiologists compared with probability calculations using Bayes’ rule. Am J Cardiol 1982;49:1927–31

    Article  PubMed  CAS  Google Scholar 

  57. Rifkin RD, Hood WB. Bayesian analysis of electrocardiographic exercise stress testing. N Engl J Med 1977;297:681–6

    Article  PubMed  CAS  Google Scholar 

  58. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. N Engl J Med 1979;300:1350–8

    Article  PubMed  CAS  Google Scholar 

  59. Weiner DA, Ryan TJ, McCabe CH, et al. Exercise stress testing. Correlations among history of angina, ST-segment response and prevalence of coronary artery disease in the Coronary Artery Surgery Study (CASS). N Engl J Med 1979;301:230–5

    Article  PubMed  CAS  Google Scholar 

  60. Chaitman BR, Bourassa MG, Davis K, et al. Angiographic prevalence of high-risk coronary artery disease in patient subsets (CASS). Circulation 1981;64:360–7

    PubMed  CAS  Google Scholar 

  61. Lee TH, Fukui T, Weinstein M, Goldman L. Cost-effectiveness of screening Cost-effectiveness of screening strategies for left main disease in patients with stable angina. Clin Res 1985;33:257A (abstract)

    Google Scholar 

  62. Podrid PJ, Graboys TB, Lown B. Prognosis of medically treated patients with coronary-artery disease with profound ST-segment depression during exercise testing. N Engl J Med 1981;305:1111–6

    Article  PubMed  CAS  Google Scholar 

  63. Wackers FJTh, Russo DJ, Russo D, Clements JP. Prognostic significance of normal quantitative planar thallium-201 stress scintigraphy in patients with chest pain. J Am Coll Cardiol 1985;6:27–30

    Article  PubMed  CAS  Google Scholar 

  64. Pauker SG, Kassirer JP. The threshold approach to clinical decision making. N Engl J Med 1980;302:1109

    Article  PubMed  CAS  Google Scholar 

  65. Goldman L. Non-invasive tests in cardiology. In: WB Branch, ed. Office practice of medicine. 2nd ed. Philadelphia: W. B. Saunders. In press

Download references

Author information

Authors and Affiliations

Authors

Additional information

Received from the Cardiovascular Division and the Division of General Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusettes.

Dr. Goldman is a Henry J. Kaiser Family Foundation Faculty Scholar in General Internal Medicine.

Dr. Lee is the recipient of a Public Health Service Clinical Investigator Award (HL01594-01) from the National Heart. Lung, and Blood Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, L., Lee, T.H. Noninvasive tests for diagnosing the presence and extent of coronary artery disease. J Gen Intern Med 1, 258–265 (1986). https://doi.org/10.1007/BF02596197

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02596197

Keywords

Navigation