Skip to main content
Log in

Test of independence and randomness based on the empirical copula process

  • Published:
Test Aims and scope Submit manuscript

Abstract

Deheuvels (1981a) described a decomposition of the empirical copula process into a finite number of asymptotically mutually independent sub-processes whose joint limiting distribution is tractable under the hypothesis that a multivariate distribution is equal to the product of its margins. It is proved here that this result can be extended to the serial case and that the limiting processes have the same joint distribution as in the non-serial setting. As a consequences, linear rank statistics have the same asymptotic distribution in both contexts. It is also shown how these facts can be exploited to construct simple statistics for detecting dependence graphically and testing it formally. Simulation are used to explore the finite-sample behavior of these statistics, which are found to be powerful against varions types of alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbe, P., Genest, C., Ghoudi, K., andRémillard, B. (1996). On Kendall's process.Journal of Multivariate Analysis, 58:197–229.

    Article  MATH  MathSciNet  Google Scholar 

  • Blum, J. R., Kiefer, J., andRosenblatt, M. (1961). Distribution free tests of independence based on the sample distribution function.The Annals of Mathematical Statistics, 32:485–498.

    MathSciNet  Google Scholar 

  • Chatterjee, S. andYilmaz, M. R. (1992). Chaos, fractals and statistics (with discussion).Statistical Science, 7:49–121.

    MATH  MathSciNet  Google Scholar 

  • Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familiaal tendency in chronic disease incidence.Biometriko, 65:141–151.

    Article  MATH  MathSciNet  Google Scholar 

  • Deheuvels, P. (1979). La fonction de dépendance empirique et ses propriétés: Un test non paramétrique d'indépendance.Académie Royale de Belgique, Bulletin de la Classe des Sciences, 5ième série, 65:274–292.

    MATH  MathSciNet  Google Scholar 

  • Deheuvels, P. (1980). Non parametric tests of independence. InNonparametric Asymptotic Statistics (Proceedings of the Conference held in Rouen in 1979), pp. 95–107. Lecture Notes in Mathematics No 821, Springer, New York.

    Google Scholar 

  • Deheuvels, P. (1981a). An asymptotic decomposition for multivariate distribution-free tests of independence.Journal of Multivariate Analysis, 11:102–113.

    Article  MATH  MathSciNet  Google Scholar 

  • Deheuvels, P. (1981b). A Kolmogorov-Smirnov type test for independence and multivariate samples.Revue Roumaine de Mathématiques Pures et Appliquées, 26:213–226.

    MATH  MathSciNet  Google Scholar 

  • Deheuvels, P. (1981c). A non parametric test for independence.Publications de l'Institut de Statistique de l'Université de Paris, 26:29–50.

    MATH  MathSciNet  Google Scholar 

  • Delgado, M. A. (1996). Testing serial independence using the sample distribution function.Journal of Time Series Analysis, 17:271–285.

    MATH  MathSciNet  Google Scholar 

  • Drouet-Mari, D. andKotz, S. (2001).Correlation and Dependence. Imperial College, London.

    Google Scholar 

  • Dugué, D. (1975). Sur des tests d'indépendance “indépendants de la loi”.Comptes Rendus de l'Académie des Sciences de Paris, Série A, 281:1103–1104.

    MATH  Google Scholar 

  • Ferguson, T. S., Genest, C., andHallin, M. (2000). Kendall's tau for serial dependence.The Canadian Journal of Statistics, 28:587–604.

    MATH  MathSciNet  Google Scholar 

  • Fisher, R. A. (1950).Statistical Methods for Research Workers, 11th Edition. Oliver and Boyd, London.

    Google Scholar 

  • Gänssler, P. andStute, W. (1987).Seminar on Empirical Processes, DMV Seminar 9, Birkhäuser, Basel.

    Google Scholar 

  • Genest, C. andMacKay, R. J. (1986). Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données.The Canadian Journal of Statistics, 14:145–159.

    MATH  MathSciNet  Google Scholar 

  • Genest, C., Quessy, J.-F., andRémillard, B. (2002). Tests of serial independence based on Kendall's process.The Canadian Journal of Statistics, 30:441–461.

    MATH  Google Scholar 

  • Ghoudi, K., Kulperger, R. J., andRémillard, B. (2001).A nonparametric test of serial independence for time series and residuals.Journal of Multivariate Analysis, 79:191–218.

    Article  MATH  MathSciNet  Google Scholar 

  • Ghoudi, K. andRémillard, B. (1998). Empirical processes based on pseudo-observations. In B. Szyszkowicz, ed.,Asymptotic Methods in Probabilitu and Statistics: A Volume in Honour of Miklós Csörgő, pp 171–197. North-Holland, Amsterdam.

    Google Scholar 

  • Ghoudi, K. andRémillard, B. (2004). Empirical processes based on pseudo-observations II: The multivariate case. In: L. Horváth and B. Szyszkowicz, eds.,Asymptotic Methods in Stochastics: Festschrift for Miklós Csörgő, vol. 44, pp. 381–406. The Fields Institute Communications Series. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Gieser, P. W. andRandles, R. H. (1997). A nonparametric test of independence between two vectors.Journal of the American Statistical Association, 92:561–567.

    Article  MATH  MathSciNet  Google Scholar 

  • Gumbel, E. J. (1960). Distributions des valeurs extrêmes en plusieurs dimensions.Publications de l'Institut de Statistique de l'Université de Paris, 9:171–173.

    MATH  MathSciNet  Google Scholar 

  • Hallin, M., Ingenbleek, J.-F., andPuri, M. L. (1985). Linear serial rank tests for randomness against ARMA alternatives.The Annals of Statistics, 13:1156–1181.

    MATH  MathSciNet  Google Scholar 

  • Hallin, M., Ingenbleek, J.-F., andPuri, M. L. (1987). Linear and quadratic serial rank tests for randomness against serial dependence.Journal of Time Series Analysis, 8:409–424.

    MATH  MathSciNet  Google Scholar 

  • Hallin, M. andPuri, M. L. (1992). Rank tests for time series analysis: A survey. In D. R. Brillinger, E. Parzen, and M. Rosenhlatt, eds.,New Directions in Time Series Analysis, Part I, pp. 111–153. Springer, New York.

    Google Scholar 

  • Hallin, M., andWerker, B. J. M. (1999). Optimal testing for semiparametric AR models—from Gaussian Lagrange multipliers to autoregression rank scores and adaptive tests. In S. Ghosh, ed.,Asymptotics, Nonparametrics, and Time Series, pp. 295–350. Marcel Dekker, New York.

    Google Scholar 

  • Hong, Y. (1998). Testing for pairwise serial independence via the empirical distribution function.Journal of the Royal Statistical Society, Series B, 60:429–453.

    Article  MATH  Google Scholar 

  • Hong, Y. (2000). Generalized spectral tests for serial dependence.Journal of the Royal Statistical Society, Series B, 62:557–574.

    Article  MATH  Google Scholar 

  • Jing, P. andZhu, L.-X. (1996). Some Blum-Kiefer-Rosenblatt type tests for the joint independence of variables.Communications in Statistics, Theory and Methods, 25:2127–2139.

    MATH  MathSciNet  Google Scholar 

  • Joe, H. (1997).Multivariate Models and Dependence Concepts. Chapman and Hall, London.

    MATH  Google Scholar 

  • Kallenberg, W. C. M., andLedwina, T. (1999). Data-driven rank tests for independence.Journal of the American Statistical Association, 94:285–301.

    Article  MATH  MathSciNet  Google Scholar 

  • Kulperger, R. J., andLockhart, R. A. (1998). Tests of independence in time series.Journal of Time Series Analysis, 19:165–185.

    Article  MATH  MathSciNet  Google Scholar 

  • Littell, R. C., andFolks, J. L. (1973). Asymptotic optimality of Fisher's method of combining independent tests II.Journal of the American Statistical Association, 68:193–194.

    Article  MATH  MathSciNet  Google Scholar 

  • Nelsen, R. B. (1990).An Introduction to Copulas. Springer, New York.

    Google Scholar 

  • Romano, J. P., andSiegel, A. F. (1986).Counterexamples in Probability and Statistics Wadsworth, London.

    MATH  Google Scholar 

  • Shih, J. H., andLouis, T. A. (1996). Tests of independence for bivariate survival data.Biometrics, 52:1440–1449.

    Article  MATH  MathSciNet  Google Scholar 

  • Skaug, H. J., andTjøstheim, D. (1993). A nonparametric test of serial independence based on the empirical distribution function.Biometrika, 80:591–602.

    Article  MATH  MathSciNet  Google Scholar 

  • Spitzer, F. L. (1974). Introduction aux processus de Markov à paramètre dansz v . In A. Badrijian and P.-L. Hennequin, eds.,École d'Été de Probabilités de Saint-Flour III-1973, pp. 115–189. Springer, New York.

    Google Scholar 

  • Stute, W. (1984). The oscillation behavior of empirical processes: The multivariate case.The Annals of Probability, 12:361–379.

    MATH  MathSciNet  Google Scholar 

  • Tjøstheim, D. (1996). Measures of dependence and tests of independence.Statistics, 28:249–284.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Genest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genest, C., Rémillard, B. Test of independence and randomness based on the empirical copula process. Test 13, 335–369 (2004). https://doi.org/10.1007/BF02595777

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595777

Key Words

AMS subject classification

Navigation