Skip to main content
Log in

On the probability of a model

  • Published:
Test Aims and scope Submit manuscript

Abstract

The posterior probabilities ofK given models when improper priors are used depend on the proportionality constants assigned to the prior densities corresponding to each of the models. It is shown that this assignment can be done using natural geometric priors in multiple regression problems if the normal distribution of the residual errors is truncated. This truncation is a realistic modification of the regression models, and since it will be made far away from the mean, it has no other effect beyond the determination of the proportionality constants, provided that the sample size is not too large. In the caseK=2, the posterior odds ratio is related to the usualF statistic in “classical” statistics. Assuming zero-one losses the optimal selection of a regression model is achieved by maximizing the posterior probability of a submodel. It is shown that the geometric criterion obtained in this way is asymptotically equivalent to Schwarz’s asymptotic Bayesian criterion, sometimes called the BIC criterion. An example of polynomial regression is used to provide numerical comparisons between the new geometric criterion, the BIC criterion and the Akaike information criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. Petrov and F. Csaki, eds.,2nd International Symposium on Information Theory. Akademiai Kiado, Budapest. Reprinted inBreakthroughs in Statistics, 1 (1992). (S. Kotz and N.L. Johnson, eds.) Springer-Verlag, New York.

    Google Scholar 

  • Akaike, H. (1977).Applications of Statistics. On entropy maximization principle, pp. 27–42. North-Holland, Amsterdam.

    Google Scholar 

  • Bartlett, M. S. (1957). A comment on D.V. Lindley’s statistical paradox.Biometrika, 44:533–534.

    MATH  MathSciNet  Google Scholar 

  • Berger, J. O. andPericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction.Journal of the American Statistical Association, 91:109–122.

    Article  MATH  MathSciNet  Google Scholar 

  • Bhansali, R. J. (1986). Asymptotically efficient selection of the order by the criterion autoregressive transfer function.Annals of Statistics, 14:315–325.

    MATH  MathSciNet  Google Scholar 

  • Bickel, P. J. andDoksum, K. A. (1977).Mathematical Statistics: Basic Ideas and Selected Topics. Holden-Day, Inc, San Francisco.

    MATH  Google Scholar 

  • Chipman, H., George, E. I., andMcCulloch, R. E. (2002).Model Selection. The practical implementation of Bayesian model selection, vol. 38, pp. 65–134. P. Lahiri, ed. Institute of Mathematical Statistics Lecture Notes-Monograph Series.

  • Dempster, A. P. (1971). Foundations of statistical inference, model searching and estimation in the logic of inference, pp. 56–81. Holt Rinehart and Winston of Canada, Toronto.

    Google Scholar 

  • Edgeworth, F. Y. (1883). The method of least squares.The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science Series, 16:360–375.

    Google Scholar 

  • Gauss, K. F. (1809).Theoria Motus Corporum Coelestium. Hamburg. English translation by C.H. Davis 1963, New York, Dover.

    Google Scholar 

  • Geisser, S. andEddy, W. F. (1979). A predictive approach to model selection.Journal of the American Statistical Association, 74:153–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Gelfand, A. E. andDey, D. K. (1994). Bayesian model choice: asymptotics and exact calculations.Journal of the Royal Statistical Society Series B, 56:501–513.

    MATH  MathSciNet  Google Scholar 

  • George, E. I. andMcCulloch, R. (1993). On obtaining invariant prior distributions.Journal of Statistical Planning and Inference, 37:169–179.

    Article  MATH  MathSciNet  Google Scholar 

  • Guinnes (1996).Guinnes book of Records.

  • Guttman, I. (1967). The use of the concept of a future observation in goodness-of-fit problems.Journal of the Royal Statistical Society Series B, 29:83–100.

    MATH  MathSciNet  Google Scholar 

  • Hager, H. andAntle, C. (1968). The choice of the degree of a polynomial.Journal of the Royal Statistical Society Series B, 30:469–471.

    Google Scholar 

  • Halpern, E. F. (1973). Polynomial regression from a Bayesian approach.Journal of the American Statistical Association, 68:137–143.

    Article  MATH  MathSciNet  Google Scholar 

  • Jeffreys, H. (1961).Theory of Probability. Oxford University Press, Oxford, 3rd ed.

    MATH  Google Scholar 

  • Kass, R. E. andWasserman, L. (1995). A reference test for nested hypotheses and its relationship to the schwarz criterion.Journal of the American Statistical Association, 90:928–934.

    Article  MATH  MathSciNet  Google Scholar 

  • Keynes, J. M. (1921).A Treatise on Probability. Macmillan. London.

    MATH  Google Scholar 

  • Macdonell, W. R. (1901). On criminal anthropometry and the identification of criminals.Biometrika, 1:177–227.

    Article  Google Scholar 

  • O’Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion).Journal of the Royal Statistical Society Series B, 57:99–138.

    MATH  MathSciNet  Google Scholar 

  • Pearson, E. S. andHartley, H. O. (1954).Biometrika Tables for Statisticians, vol. 1. University Press, Cambridge, 3rd ed.

    MATH  Google Scholar 

  • Rueda, R. (1992). A Bayesian alternative to parametric hypothesis testing.Test, 1:61–68.

    Article  MATH  MathSciNet  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model.Annals of Statistics, 6:461–464.

    MATH  MathSciNet  Google Scholar 

  • Smith, A. F. M. andSpiegelhalter, D. J. (1980). Bayes factors and choice criteria for linear models.Journal of the Royal Statistical Society, Series B, 42:768–776.

    MathSciNet  Google Scholar 

  • Villegas, C. (1981). Inner statistical inference II.Annals of Statistics, 9:768–776.

    MATH  MathSciNet  Google Scholar 

  • Villegas, C. (1990). Bayesian inference in models with euclidean structures.Journal of the American Statistical Association, 85:1159–1164.

    Article  MATH  MathSciNet  Google Scholar 

  • Villegas, C. andMartinez, C. J. (1999). On the concepts of coherence and admissibility.Test, 8:319–338.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Swartz.

Additional information

Villegas and Swartz were partially supported by grants from the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villegas, C., Swartz, T. & Martínez, C. On the probability of a model. Test 11, 413–438 (2002). https://doi.org/10.1007/BF02595715

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595715

Key Words

AMS subject classification

Navigation