, Volume 10, Issue 2, pp 357–373 | Cite as

Inference on some parametric functions in the univeriate lognormal diffusion process with exogenous factors

  • Ramón Gutiérrez
  • Patrica Román
  • Francisco Torres


In this paper we consider, for the univariate lognormal diffusion process with exogenous factors, the inference for some parametric functions that include as particular cases the trend and the covariance function of the process. Concretely, we obtain the UMVU estimators of these functions and the efficiency of them relative to the corresponding ML estimators. Finally, we conclude with an application to a particular case of exogenous factor.

Key words

Minimum variance unbiased estimation relative efficiency 

AMS subject classification

60J60 62M05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities.Journal of Political Economy,81, 637–654.CrossRefGoogle Scholar
  2. Capocelli, R.M. and L.M. Ricciardi (1974). A diffusion model for population growth in random environment.Theoretical Population Biology,5, 28–41.CrossRefGoogle Scholar
  3. Cox, J.C. and S.A. Ross (1976). The evaluation of options for alternative stochastic processes.Journal of Financial Economy,3, 145–166.CrossRefGoogle Scholar
  4. Crow, E.L. and K. Shimizu (1988).Lognormal Distributions. Theory and Applications. Marcel Dekker.Google Scholar
  5. Gutiérrez, R., J.M. Angulo, A. González and R. Pérez (1991). Inference in lognormal multidimensional diffusion process with exogenous factors: application to modelling in economics.Applied Stochastic Models and Data Analysis,7, 295–316.MATHMathSciNetGoogle Scholar
  6. Gutiérrez, R., A. González and F. Torres (1997). Estimation in multivariate lognormal diffusion process with exogenous factors.Applied Statistics,46, 140–146.MATHGoogle Scholar
  7. Gutiérrez, R., A. Hermoso and M. Molina (1986). On the estimation of the drift coefficient in randomly stopped diffusion processes.Trabajos de Estadística,1, 57–66.MATHGoogle Scholar
  8. Gutiérrez, R., L. Ricciardi, P. Román and F. Torres (1997). First-passage-time densities for time-non-homogeneous diffusion processes.Journal of Applied Probability,34, 623–631.MATHCrossRefMathSciNetGoogle Scholar
  9. Gutiérrez, R., P. Román and F. Torres (1993). Inference on univariate lognormal diffusion processes via first-passage-times.Proceedings of the Sixth International Symposium on A.S.M.D.A. (J. Jansen and Ch. Skiadas, eds.)Google Scholar
  10. Gutiérrez, R., P. Román and F. Torres (1995). A note on the Volterra integral equation for the first-passage-time density,Journal of Applied Probability,32, 635–648.MATHCrossRefMathSciNetGoogle Scholar
  11. Gutiérrez, R., P. Román and F. Torres (1999). Inference and first-passage-times for the lognormal diffusion process with exogenous factors: application to modelling in economics.Applied Stochastic Models in Business and Industry,15, 325–332.MATHCrossRefGoogle Scholar
  12. Hunt, P.J. and J.G. Kennedy (2000).Financial Derivatives in Theory and Practice. John Wiley and Sons.Google Scholar
  13. Lamberton, D. and B. Lapeyre (1996).Introduction to Stochastic Calculus Applied to Finance. Chapman and Hall.Google Scholar
  14. Lawrence, R.J. (1984). The lognormal distribution of the duration of strikes.Journal of the Royal Statistical Society, A,147, 464–483.CrossRefGoogle Scholar
  15. Marcus, A. and I. Shaked (1984). The relationship between accounting measures and prospective probabilities of insolvency: an application to the banking industry.Financial Review,19, 67–83.CrossRefGoogle Scholar
  16. Merton, R.C. (1976). Option pricing when underlying stock returns are discontinuous.Journal of Financial Economy,3, 125–144.CrossRefGoogle Scholar
  17. Ricciardi, L.M. (1977).Diffusion Processes and Related Topics in Biology. Springer Verlag.Google Scholar
  18. Shimizu, K. and K. Iwase (1981). Uniformly minimum variance unbiased estimation in lognormal and related distributions.Communications in Statistics-Theory and Methods,10, 1127–1147.MathSciNetGoogle Scholar
  19. Tintner, G. and J.K. Sengupta (1972).Stochastic Economics. Academic Press.Google Scholar
  20. Torres, F. (1993). Aportaciones al estudio de difusiones estocásticas no homogéncas. Ph.D. Thesis. University of Granada.Google Scholar

Copyright information

© Sociedad Española de Estadistica e Investigacion Operativa 2001

Authors and Affiliations

  • Ramón Gutiérrez
    • 1
  • Patrica Román
    • 1
  • Francisco Torres
    • 1
  1. 1.Departmento de Estadística e Investigación OperativaUniversidad de GranadaGranadaSpain

Personalised recommendations