Skip to main content
Log in

Creep deformation and damage in a continuous fiber-reinforced Ti-6Al-4V composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mechanisms of longitudinal creep deformation and damage were studied in an eight-ply unidirectional-reinforced SCS-6/Ti-6Al-4V composite. The composite was creep tested in air under constant tensile load at temperatures from 427 °C to 650 °C and stresses from 621 to 1380 MPa.In situ acoustic emission (AE) monitoring and post-test metallographic evaluation were used to study fiber fracture and damage during creep. At low creep stresses, creep rates continuously decreased to near-zero values. This was attributed to a mechanism of matrix relaxation and the time-dependent redistribution of load from the ductile matrix to the elastic fibers. At higher stresses, progressive fiber overload occurred during creep loading. In this case, the composite exhibited a stage of decreasing creep rate (due primarily to matrix relaxation), followed by a secondary stage of nearly constant creep rate due to fiber fracture. The results indicate that interfacial oxidation damage and inefficient load transfer at elevated temperatures significantly decreased the capability of broken fibers to carry load. As a result, additional time-dependent stress redistribution occurred in the composite, which was responsible for the secondary creep stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. DiCarlo:J. Mater. Sci., 1986, vol. 21, pp. 217–24.

    Article  CAS  Google Scholar 

  2. J. Beale, E. Lara Curzio, and S.S. Sternstein:Proc. 35th Int. SAMPE Symp., SAMPE, Corvina, CA, 1990, pp. 1193–1204.

    Google Scholar 

  3. M. Khobaib:Proc. American Society for Composites—Sixth Technical Conf., Technomic Publishing Co., Lancaster, PA, 1991, pp. 638–47.

    Google Scholar 

  4. S.W. Schwenker, D. Evans, and D. Eylon: inTitanium ’92 Science and Technology, F.H. Froes and I.L. Caplan, eds., TMS, Warrendale, PA, 1993, vol. 3, pp. 2545–51.

    Google Scholar 

  5. S.W. Schwenker, I. Roman, and D. Eylon: inAdvanced Composites ’93, T. Chandra and A.K. Dhingra, eds., TMS, Warrendale, PA, 1993, pp. 1169–76.

    Google Scholar 

  6. S.W. Schwenker: Ph.D. Thesis, University of Dayton, Dayton, OH, 1994.

    Google Scholar 

  7. S.M. Jeng and J.-M. Yang:Mater. Sci. Eng., 1993, vol. A171, pp. 65–75.

    CAS  Google Scholar 

  8. N. Ohno, N. Okamoto, T. Miyake, S. Nishide, and S. Masaki, Jr.:Scripta Metall. Mater., 1994, vol. 31, pp. 1549–54.

    Article  CAS  Google Scholar 

  9. N. Ohno, K. Toyoda, N. Okamoto, T. Miyake, and S. Nishide:Trans. ASME, 1994, vol. 116, pp. 208–14.

    CAS  Google Scholar 

  10. D.L. McDanels, R.A. Signorelli, and J.W. Weeton: NASA-TN-D-4173, NASA-Lewis Research Center, Cleveland, OH, 1967.

  11. M. Taya: inMetal Matrix Composites: Mechanisms and Properties, R.K. Everett and R.J. Arsenault, eds., Academic Press, Boston, MA, 1991, pp. 189–215.

    Google Scholar 

  12. M. McLean:Compos. Sci. Technol., 1985, vol. 23, pp. 37–52.

    Article  Google Scholar 

  13. M. McLean: inMaterials and Engineering Design: The Next Decade, B.F. Dyson and D.R. Hayhurst, eds., Institute of Metals, London, 1989, pp. 287–94.

    Google Scholar 

  14. S. Goto and M. McLean:Acta Metall. Mater., 1991, vol. 39 (2), pp. 153–64.

    Article  CAS  Google Scholar 

  15. R.A. MacKay, P.K. Brindley, and F.H. Froes:JOM, 1991, vol. 43, pp. 23–29.

    CAS  Google Scholar 

  16. S.R. Nutt and F.E. Wawner:J. Mater. Sci., 1985, vol. 20, pp. 1953–60.

    Article  CAS  Google Scholar 

  17. X.J. Ning and P. Pirouz:J. Mater. Res., 1991, vol. 6, pp. 2234–48.

    CAS  Google Scholar 

  18. G.A. Hartman and S.M. Russ: inMetal Matrix Composites: Testing, Analysis, and Failure Modes, W.S. Johnson, ed., ASTM STP 1032, ASTM, Philadelphia, PA, 1989, pp. 43–53.

    Google Scholar 

  19. I. Roman and R. Aharonov:Acta Metall. Mater., 1992, vol. 40, pp. 477–85.

    Article  CAS  Google Scholar 

  20. I. Roman, S. Krishnamurthy, and D.B. Miracle: inTitanium ’92 Science and Technology, F.H. Froes and I.L. Caplan, eds., TMS, Warrendale, PA, 1993, vol. 3, pp. 2545–51.

    Google Scholar 

  21. J. Awerbuch and J.G. Backuckas: inMetal Matrix Composites: Testing, Analysis, and Failure Modes, W.S. Johnson, ed., ASTM STP 1032, ASTM, Philadelphia, PA, 1989, pp. 68–99.

    Google Scholar 

  22. R.W. Evans and B. Wilshire:Creep of Metals and Alloys, Institute of Metals, London, 1985.

    Google Scholar 

  23. M.L. Gambone and F.E. Wawner: inIntermetallic Matrix Composites III, J.A. Graves, R.R. Bowman, and J.J. Lewandowski, eds., MRS, Pittsburgh, PA, 1994, vol. 350, pp. 111–18.

    Google Scholar 

  24. M.L. Gambone and S.W. Schwenker: Wright Laboratory, Materials Directorate, Wright-Patterson AFB, OH, unpublished research, 1994.

  25. S.M. Pickard, D.B. Miracle, B.S. Majumdar, K.L. Kendig, L. Rothenflue, and D. Coker:Acta Metall. Mater., 1995, vol. 43, pp. 3105–12.

    Article  CAS  Google Scholar 

  26. B.S. Majumdar and G.M. Newaz:Phil. Mag., 1992, vol. 66, pp. 187–212.

    Google Scholar 

  27. D. Coker and N.E. Ashbaugh:Elastic-Plastic Finite Difference Analysis of Unidirectional Composites Subjected to Thermomechanical Cyclic Loading, WL-TR-93-4043, Wright Laboratory, Wright-Patterson AFB, OH, 1992.

  28. M.J. Iremonger and W.G. Wood:J. Strain Analysis, 1967, vol. 2 (3), pp. 239–45.

    Google Scholar 

  29. Z.-Z. Du and R.M. McMeeking:J. Mech. Phys. Solids, 1995, vol. 43, pp. 701–26.

    Article  CAS  Google Scholar 

  30. W.A. Curtin:J. Am. Ceram. Soc., 1991, vol. 74, pp. 2837–45.

    Article  CAS  Google Scholar 

  31. C. Weber, Z.-Z. Du, and F.W. Zok:Acta Metall. Mater, 1996, vol. 44 (2), pp. 683–95.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwenker, S.W., Eylon, D. Creep deformation and damage in a continuous fiber-reinforced Ti-6Al-4V composite. Metall Mater Trans A 27, 4193–4204 (1996). https://doi.org/10.1007/BF02595667

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595667

Keywords

Navigation