Skip to main content
Log in

Mathematical modeling of the extrusion of 6061/Al2O3/20p composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An integrated approach, involving laboratory experiments, extrusion plant trials, and finite element modeling (FEM) has been adopted for the study of the extrusion of the metal matrix composite (MMC) 6061/Al2O3/20p. Gleeble compression tests were performed to develop the constitutive equation of the MMC under industrial extrusion process conditions. Extrusion plant trials were conducted to measure load and temperature and to obtain samples for microstructural analysis. Metal flow, with respect to particle behavior in the deformation zone, was examined microscopically. An FEM based on the commercial code DEFORM was adopted for the simulation of the extrusion of the MMC; the constitutive equation developed was incorporated into the model. Using an updated Lagrangian formulation, both the transient and steady-state regions of extrusion were modeled. Load and temperature predictions resulting from this model agree well with the measured values in the upsetting stage and in the steady-state region. Temperature predictions agree to within less than 3 pct of the measured values. The FEM predictions of temperature, stress, strain, and strain-rate distribution were correlated with the particle behavior and low-speed cracking during extrusion: large shear deformation promotes particle fracture in the deformation zone, and tensile stress generation in the die land zone of the billet leads to low-speed cracking of the MMC during extrusion. The latter occurs at low temperature in the front end of the billet at the beginning of the extrusion process due to heat loss to the cold die.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Allison and G.S. Cole:JOM, 1993, vol. 45 (1), pp. 19–24.

    CAS  Google Scholar 

  2. W. Dixon: in5th Int. Aluminum Extrusion Technology Seminar, The Aluminum Association, Washington, D.C., 1992, vol. I, pp. 429–36.

    Google Scholar 

  3. R.W. Hains, P.L. Morris, and P.W. Jeffrey:Proc. Int. Symp. Advanced Structural Materials, 1988, pp. 53–60.

  4. S. Brusethaug, O. Reiso, and W. Ruch:Proc. Int. Conf. on Particulate-Reinforced Metal Matrix Composites, J. Masounave and F.G. Hamel, eds., Montreal, PQ, Canada, Sept. 17–19, 1990, pp. 173–79.

  5. J.E. Selseth and M. Lefstad:5th Scandinavian Symp. on Materials Science, Copenhagen, May 22–25, 1989, pp. 1–8.

  6. C.H.J. Davies:Mater. Sci. Forum, 1995, vols. 104–107, pp. 447–58.

    Google Scholar 

  7. B.J. Meadows and M.J. Cutler:J. Inst. Met., 1969, vol. 97, pp. 321–26.

    CAS  Google Scholar 

  8. T. Sheppard and D. Raybould:J. Inst. Met., 1973, vol. 101, pp. 73–78.

    CAS  Google Scholar 

  9. O. Reiso: inProc. 4th Int. Aluminum Extrusion Technical Seminar, The Aluminum Association, Washington, D.C., 1988, pp. 287–95.

    Google Scholar 

  10. M.P. Clode and T. Sheppard:Mater. Sci. Technol. 1993, vol. 9, pp. 313–18.

    CAS  Google Scholar 

  11. T. Sheppard:Int. Conf. on Aluminium Alloys, C.Q. Chen and E.A. Starke, eds., Intl. Academic Publishers, 1990, vol. 2, pp. 744–54.

    Google Scholar 

  12. A.F. Castle and T. Sheppard:Met. Technol., 1976, vol. 3, pp. 465–75.

    Google Scholar 

  13. H.J. McQueen and O.C. Celliers:Mater. Forum, 1993, vol. 17, pp. 1–13.

    CAS  Google Scholar 

  14. A.F. Castle and T. Sheppard:Met. Technol., 1976, vol. 3, pp. 454–64.

    Google Scholar 

  15. T. Sheppard:Mater. Sci. Technol., 1993, vol. 9, pp. 430–40.

    CAS  Google Scholar 

  16. T. Sheppard and D. Raybould:J. Inst. Met., 1973, vol. 101, pp. 33–44.

    CAS  Google Scholar 

  17. G.J. Richardson, D.N. Hawkins, and C.M. Sellars: inWorked Examples in Metalworking, Institute of Metals, London, 1985, p. 148.

    Google Scholar 

  18. W. Johnson, R. Sowerby, and R.D. Venter:Plane Strain Slip Line Fields For Metal Deformation Processes: a Source Book and Bibliography, Pergamon Press, Oxford, 1982, p. 92.

    Google Scholar 

  19. A.H. Shabaik:J. Mater. Proc. Technol., 1991, vol. 27, pp. 3–24.

    Article  Google Scholar 

  20. G. Grasmo, K. Holthe, S. Støren, H. Valberg, R. Flatval, L. Hanssen, M. Lefstad, O. Lohne, T. Welo, R. Ørsund, and J. Herberg:5th Int. Aluminum Extrusion Technology Seminar, The Aluminum Association, Washington, D.C., 1992, vol. II, pp. 367–76.

    Google Scholar 

  21. T. Reinikainen, K. Andersson, S. Kivivuori, and A.S. Korhonen:J. Mater. Proc. Technol., 1992, vol. 34, pp. 101–108.

    Article  Google Scholar 

  22. A. Alto, L.M. Galantucci, and L. Tricarico:J. Mater. Proc. Technol., 1992, vol. 31, 335–45.

    Article  Google Scholar 

  23. C. Devadas and O.C. Celliers: in5th Int. Aluminum Extrusion Technology Seminar, The Aluminum Association, Washington, D.C. 1992, vol. I, pp. 359–68.

    Google Scholar 

  24. T. Sheppard and D.S. Wright:Met. Technol., 1979, vol. 6, pp. 215–23.

    CAS  Google Scholar 

  25. S.-I. Oh, W.T. Wu, J.P. Wang, and A. Vedhanayagam:J. Mater. Proc. Technol., 1991, vol. 27, pp. 25–42.

    Article  Google Scholar 

  26. S. Kobayashi, S.-I. Oh, and T. Altan:Metal Forming and the Finite Element Method, 1st ed., OUP, Oxford, United Kindom, 1989, pp. 111–30.

    Google Scholar 

  27. C.O. Hlady, J.K. Brimacombe, I.V. Samarasekera, and E.B. Hawbolt:Metall. Mater. Trans., 1995, vol. 26B, pp. 1019–27.

    CAS  Google Scholar 

  28. O.Z. Zienkiewicz and R.L. Taylor:The Finite Element Method, Basic Formulation and Linear Problems, 4th ed., McGraw-Hill Book Company Europe, London, U.K., 1993, vol. 1.

    Google Scholar 

  29. C.H.J. Davies, E.B. Hawbolt, I.V. Samarasekera, and J.K. Brimacombe:J. Mater. Processing Technol., 1996, accepted for publication.

  30. C.H.J. Davies, W.C. Chen, E.B. Hawbolt, I.V. Samarasekera, and J.K. Brimacombe:Scripta Metall. Mater., 1995, vol. 32.

  31. S. Blecic, W. Libura, and J. Zasadzinski:5th Int. Aluminum Extrusion Technology Seminar, The Aluminum Association, Washington, D.C., 1992, vol. II, pp. 485–94.

    Google Scholar 

  32. C.C. Chen, S.I. Oh, and S. Kobayashi:J. Eng. Ind., 1979, vol. 101, pp. 23–35.

    Google Scholar 

  33. T. Sheppard and M.P. Clode:4th Int. Aluminum Extrusion Technology Seminar, Chicago, IL, Apr. 11–14, 1988, pp. 329–41.

  34. L. Chevalier and N. Dahan:J. Mater. Proc. Technol. 1992, vol. 31, pp. 199–208.

    Article  Google Scholar 

  35. P. Sakaris and H.J. McQueen:3rd. Int. Conf. on Aluminium Alloys, L. Arnberg, O. Lohne, E. Nes, and N. Ryum, eds., Norwegian Institute of Technology, Trondheim, 1992, pp. 554–59.

    Google Scholar 

  36. D. Yu and T. Chandra: inProc. Conf. Advanced Composites ’93, T. Chandra, ed., TMS, Warrendale, PA, 1993.

    Google Scholar 

  37. W.C. Chen: Ph.D. Dissertation, University of British Columbia, Vancouver, BC, Canada, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W.C., Davies, C.H.J., Samarasekera, I.V. et al. Mathematical modeling of the extrusion of 6061/Al2O3/20p composite. Metall Mater Trans A 27, 4095–4111 (1996). https://doi.org/10.1007/BF02595658

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595658

Keywords

Navigation