Skip to main content

Advertisement

Log in

The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of quenching condition on the mechanical properties of an A356 (Al-7 wt pct Si-0.4 wt pct Mg) casting alloy has been studied using a combination of mechanical testing, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). As the quench rate decreases from 250 °C/s to 0.5 °C/s, the ultimate tensile strength (UTS) and yield strength decrease by approximately 27 and 33 pct, respectively. The ductility also decreases with decreasing quench rate. It appears that with the peak-aged condition, both the UTS and yield strength are a logarithmic function of the quench rate,i.e., UTS orσ y =A logR +B. The termA is a measure of quench sensitivity. For both UTS and yield strength of the peak-aged A356 alloy,A is approximately 32 to 33 MPa/log (°C/s). The peak-aged A356 alloy is more quench sensitive than the aluminum alloy 6063. For 6063,A is approximately 10 MPa/log (°C/s). The higher quench sensitivity of A356 is probably due to the high level of excess Si. A lower quench rate results in a lower level of solute supersaturation in the α-Al matrix and a decreased amount of excess Si in the matrix after quenching. Both of these mechanisms play important roles in causing the decrease in the strength of the peak-aged A356 with decreasing the quench rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Evancho and J.T. Staley:Metall. Trans., 1974, vol. 5, pp. 43–47.

    CAS  Google Scholar 

  2. Metals Handbook, 9th ed., vol. 4,Heat Treatment of Aluminium Alloys, ASM INTERNATIONAL, Materials Park, OH, 1981, pp. 688–97.

  3. J.T. Staley:Mater. Sci. Technol., 1987, vol. 3, pp. 923–35.

    CAS  Google Scholar 

  4. D.S. Thompson, B.S. Subramanya, and S.A. Levy:Metall. Trans., 1971, vol. 2, pp. 1149–60.

    CAS  Google Scholar 

  5. R.J. Livak:Metall. Trans. A, 1982, vol. 13A, pp. 1318–21.

    Google Scholar 

  6. O. Lohne and A.L. Dons:Scand. J. Metall., 1983, vol. 12, pp. 34–36.

    CAS  Google Scholar 

  7. H. Zoller and A. Ried:Z. Metallkd., 1971, vol. 62, pp. 354–58.

    CAS  Google Scholar 

  8. J.W. Evancho: Report No. 13-73-HQ40, Alcoa Laboratories, Alcoa Center, PA, 1973.

    Google Scholar 

  9. M.F. Komarova, N.N. Buynov, and L.I. Kaganovich:Fiz. Met. Metalloyed., 1973, vol. 36, pp. 533–40.

    CAS  Google Scholar 

  10. Z.H. Ismail and F.H. Hammad:Scripta Metall. Mater., 1991, vol. 25, pp. 1597–1600.

    Article  CAS  Google Scholar 

  11. M. Tsukuda, S. Koike, and M. Harada:J. Jpn. Inst. Light Met., 1978, vol. 28, pp. 8–14.

    CAS  Google Scholar 

  12. D. Apelian, S. Shivkumar, and G. Sigworth:Trans. Am. Foundrymen’s Soc., 1989, vol. 97, pp. 727–42.

    Google Scholar 

  13. C.E. Bates:Trans. Am. Foundrymen’s Soc., 1993, vol. 101, pp. 1045–54.

    CAS  Google Scholar 

  14. S. Shivkumar, S. Ricci, Jr., C. Keller, and D. Apelian:J. Heat Treating, 1990, vol. 8, pp. 63–70.

    CAS  Google Scholar 

  15. A.K. Gupta and D.J. Lloyd: inAluminum Alloys, Their Physical and Mechanical Properties (ICAA3), L. Amberg, O. Lohne, E. Nes, and N. Ryum, eds., The Norwegian Institute of Technology, Trondheim, June 1992, vol. II, pp. 21–25.

    Google Scholar 

  16. G.A. Edwards: Ph.D. Thesis, The University of Queensland, Queensland, 1994.

    Google Scholar 

  17. D.L. Zhang: The University of Queensland, Queensland, unpublished research, 1995.

  18. G.A. Edwards, M.J. Couper, and G.L. Dunlop: inAluminium Alloys: Their Physical and Mechanical Properties (ICAA4), T.H. Sanders, Jr. and E.A. Starke, Jr., eds., The Georgia Institute of Technology, Atlanta, GA, vol. II, pp. 629-36.

  19. K. Matsuda, Y. Uetani, H. Anada, S. Tada, and S. Ikeno: inAluminium Alloys, Their Physical and Mechanical Properties (ICAA3), L. Arnberg, O. Lohne, E. Nes, and N. Ryum, eds, The Norwegian Institute of Technology, Trondheim, vol. I, pp. 272–77.

  20. G. Gustafsson, T. Thorvaldsson, and G.L. Dunlop:Metall. Trans. A, 1986, vol. 17A, pp. 45–52.

    CAS  Google Scholar 

  21. R.C. Voigt and D.R. Bye:Trans. Am. Foundrymen’s Soc., 1991, vol. 99, pp. 33–50.

    CAS  Google Scholar 

  22. J.P. Lynch, L.M. Brown, and M.H. Jacobs:Acta Metall., 1982, vol. 30, pp. 1389–95.

    Article  CAS  Google Scholar 

  23. M. Kaczorowski:Aluminium, 1984, vol. 60, pp. E177-E179.

    Google Scholar 

  24. J.W. Martin:Micromechanisms in Particle Hardened Alloys, Cambridge University Press, Cambridge, United Kingdom, 1980, p. 54.

    Google Scholar 

  25. H.S. Rosenbaum and D. Turnbull:Acta Metall., 1958, vol. 6, pp. 653–59.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D.L., Zheng, L. The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy. Metall Mater Trans A 27, 3983–3991 (1996). https://doi.org/10.1007/BF02595647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595647

Keywords

Navigation