Skip to main content
Log in

Hydrogen-induced cleavage fracture of Fe3Al-based intermetallics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen-induced fracture of ductile Fe3Al-based intermetallics was studied through mechanical testing, fracture surface observation, andin situ transmission electron microscopy (TEM) tests of tensile specimens. Mechanical properties of ordinary ductile X-80 pipeline steel (low-alloy steel) were tested and compared with Fe3Al intermetallics. Elongations of the Fe3Al alloy decreased from 14 to 10 pct, with increases in the strain rate from 10−6 to 10−3/s. The elongation reduction of Fe3Al was caused by the hydrogen-induced fracture. There was no elongation reduction when the testing was done in mineral oil. Non-necking occurred near the fracture section, and the fracture surfaces mainly consist of cleavage and partial intergranular morphologies. Elongation near the fracture surface of the Fe3Al intermetallics was about 14 pct, which is the same as the total elongation. For the pipeline steel, however, an elongation near the fracture cross section was greater than 130 pct, which was much higher than its total elongation of 17 pct.In situ TEM observation on a tensile test sample showed crack propagation accompanied by dislocation plasticity. When the Fe3Al was precharged cathodically, the crack tip was sharp. Its radius was much less than that obtained without hydrogen charging. The crack propagated along the grain boundary for the charged specimens, but penetrated the grain boundary for the specimen without hydrogen charging. Effects of hydrogen on plastic deformation and grain-boundary cracking are discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Liu, E.H. Lee, and C.G. McKamey:Scripta Metall., 1989, vol. 23, p. 875.

    Article  CAS  Google Scholar 

  2. C.T. Liu, C.G. McKamey, and E.H. Lee:Scripta Metall., 1990, vol. 24, p. 385.

    Article  CAS  Google Scholar 

  3. C.T. Liu, C.G. McKamey, and E.H. Lee:Scripta Metall., 1990, vol. 24, p. 385.

    Article  CAS  Google Scholar 

  4. D.J. Gaydosh and M.V. Nathal:Scripta Metall., 1990, vol. 24, p. 1281.

    Article  CAS  Google Scholar 

  5. C.T. Liu and E.P. George:Scripta Metall., 1990, vol. 24, p. 1285.

    Article  CAS  Google Scholar 

  6. D.B. Kasul and L.A. Heldt:Scripta Metall., 1991, vol. 25, p. 1047.

    Article  CAS  Google Scholar 

  7. C.G. McKamey:J. Mater. Res., 1991, vol. 6, p. 1779.

    CAS  Google Scholar 

  8. R.J. Lynch, L.A. Heldt, and W.W. Milligan:Scripta Metall., 1991, vol. 25, p. 2147.

    Article  CAS  Google Scholar 

  9. P. Nagpal and I. Baker:Scripta Metall., 1991, vol. 25, p. 2577.

    Article  CAS  Google Scholar 

  10. D.Z. Zhang, D.L. She, F.W. Zhu, and J.M. Xiao:Scripta Metall., 1992, vol. 27, p. 303.

    Article  CAS  Google Scholar 

  11. A. Castagna and N.S. Stoloff:Scripta Metall., 1992, vol. 27, p. 673.

    Article  Google Scholar 

  12. J.P. Lin, W.Y. Chu, and J.M. Xiao:Scripta Metall., 1992, vol. 27, p. 1295.

    Article  CAS  Google Scholar 

  13. R.J. Lynch, K.A. Gee, and L.A. Heldt:Scripta Metall., 1994, vol. 30, p. 945.

    Article  CAS  Google Scholar 

  14. R.J. Lynch, M. Harburm, L. Maucione, and L.A. Heldt:Scripta Metall., 1994, vol. 30, p. 1157.

    Article  CAS  Google Scholar 

  15. H. Chiu, L. Qiao, and X. Mao:Corrosion ’95, paper no. 178.

  16. C.G. Mckamey and C.T. Liu:1st Int. Symp. on Environmental Effects on Advanced Materials, R.D. Kane, ed., NACE, Houston, TX, 1992, paper no. 17-1.

    Google Scholar 

  17. C.G. Mckamey, J.A. Horton, and C.T. Liu:J. Mater. Res., 1989, vol. 4, p. 1156.

    CAS  Google Scholar 

  18. V.K. Sikka:SAMPLE Q., 1991, vol. 22, p. 2.

    CAS  Google Scholar 

  19. V.K. Sikka, S. Viswanathan, and C.G. McKamy: inStructural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, p. 483.

    Google Scholar 

  20. I. Baker and J.A. Horton:Phil. Mag. A, 1993, vol. 67, p. 479.

    CAS  Google Scholar 

  21. J. Fang and E.M. Schulson:Phil. Mag. A, 1993, vol. 67, p. 1117.

    CAS  Google Scholar 

  22. I. Baker, E.M. Schulson, and J.A. Horton:Acta Metall., 1987, vol. 35, p. 1533.

    Article  CAS  Google Scholar 

  23. J.A. Horton and S.M. Ohr:J. Mater. Sci., 1982, vol. 17, p. 3140.

    Article  Google Scholar 

  24. H.G.F. Wilsdorf:Acta Metall., 1982, vol. 30, p. 1247.

    Article  CAS  Google Scholar 

  25. Q.Z. Chen, W.Y. Chu, and J.M. Xiao:Scripta Metall. Mater., 1994, vol. 30, p. 1355.

    Article  CAS  Google Scholar 

  26. R.L. Lyles and H.G.F. Wilsdorf:Acta Metall., 1975, vol. 23, p. 269.

    Article  CAS  Google Scholar 

  27. H.F. Hanninen, T.C. Lee, I.M. Robertson, and H.K. Birnbaum:J. Mater. Eng. Performance, 1993, vol. 2, p. 807.

    CAS  Google Scholar 

  28. G.M. Bond, I.M. Robertson, and H.K. Birnbaum:Acta Metall., 1989, vol. 37, p. 1407.

    Article  CAS  Google Scholar 

  29. P. Sofronis and H.K. Birnbaum:Mater. Sci. Eng. A, 1994, vol. A176, p. 191.

    Google Scholar 

  30. L. Chen: Institute of Metal, Shenyang, China, private communication, 1994.

  31. G.E. Dieter:Mechanical Metallurgy, McGraw-Hill Inc., New York, NY, 1986, p. 289.

    Google Scholar 

  32. A.A. Griffith:Phil. Trans. R. Soc., 1921, vol. A221.

  33. N.S. Stoloff and T.L. Johnston:Acta Metall., 1963, vol. 11, p. 251.

    Article  CAS  Google Scholar 

  34. J.F. Knott: inChemistry and Physics of Fracture, R.M. Lantanision and R.H. Jones, eds., Martinus Nijhoff, Dordrecht, 1987, p. 44

    Google Scholar 

  35. L.B. Freund and J.W. Hutchinson:J. Mech. Phys. Solids, 1985, vol. 33, p. 169.

    Article  Google Scholar 

  36. K.M. Chang and R.A. Rosa:Cleavage Behavior of Intermetallic Fe-40Al Single Crystals, GE Report, General Electric, 1990.

  37. J.R. Rice:Proc. 1st Int. Conf. Fracture, T. Yokobori, T. Kawasaki, and J.L. Swedlow, eds., Sendai, 1966, p. 309.

  38. C.J. McMahon, Jr. and V. Vitek:Acta Metall., 1979, vol. 27, p. 507.

    Article  CAS  Google Scholar 

  39. M.L. Jokl, V. Vitek, and C.J. Mcmahon, Jr.:Acta Metall., 1980, vol. 28, p. 1479.

    Article  Google Scholar 

  40. J.R. Rice and J.S. Wang:Mater. Sci. Eng., 1989, vol. A107, p. 23.

    CAS  Google Scholar 

  41. W.W. Gerberich, R.A. Oriani, M.J. Lii, X. Chen, and T. Force:Phil. Mag. A, 1991, vol. 63, p. 363.

    CAS  Google Scholar 

  42. D. Tromans:Acta Metall. Mater., 1994, vol. 42, p. 2043.

    Article  CAS  Google Scholar 

  43. Yu.I. Khomitskii, P.I. Yukhnovskii, and V.I. Tkachev:Sov. Mater. Sci., 1990, vol. 26, p. 156.

    Article  Google Scholar 

  44. J.K. Choi and S.I. Pyun:J. Mater. Sci., 1990, vol. 25, p. 246.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, X., Qiao, L. Hydrogen-induced cleavage fracture of Fe3Al-based intermetallics. Metall Mater Trans A 27, 3949–3956 (1996). https://doi.org/10.1007/BF02595643

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595643

Keywords

Navigation