Skip to main content
Log in

Elevated temperature deformation behavior of a dispersion-strengthened Al-Fe,V,Si alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The deformation behavior of a rapidly solidified, dispersion-strengthened Al alloy containing 11.7 pct Fe, 1.2 pct V, and 2.4 pct Si was studied at test temperatures up to 450 °C using constantstress creep and constnt strain-rate tensile tests. Apparent stress exponents (n) up to ∼24 and an activation energy of 360 kJ/mol were obtained with the standard Arrhenius type power-law creep equation, which also suggested a change in behavior at ∼300 °C. Substructure-invariant and dislocation/dispersoid interaction models were found to be inadequate for explaining the behavior. When the data were replotted as\(\dot \varepsilon ^{1/n} \) vs σ, two regimes were found between 350 °C and 450 °C. A model with a pseudothreshold stress (σ Th′ ) for the higher stress regime resulted inn ∼3, indicating solute drag in this regime. Transmission electron microscopy (TEM) showed departureside pinning of dislocations at higher stresses. In the lower stress regime, TEM showed dislocation subgrain structures. Here, the model resulted in a stress exponent of ∼4.5 indicating the dislocation climb mechanism. At temperatures below ∼300 °C, a single regime was found along with lower activation energies and a stress dependence of ∼3. Dislocation pipe diffusion is proposed to explain the lower activation energy. The origin ofσ Th′ has been tied to dislocation generation at the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Skinner, R.L. Bye, D. Raybould, and A.M. Brown:Scripta Metall., 1986, vol. 20, pp. 867–72.

    Article  CAS  Google Scholar 

  2. P.S. Gilman, M.S. Zedalis, J.M. Peltier, and S.K. Das:Proc. AIAA/AHS/ASEE Aircraft Design, Systems and Operations Conf., American Institute of Aeronautics and Astronautics, Washington, DC, 1988, pp. 1–7.

    Google Scholar 

  3. D. Raybould: inDispersion Strengthened Aluminum Alloys, Y.-W. Kim and W.M. Griffith, eds., TMS, Warrendale, PA, 1988, pp. 199–215.

    Google Scholar 

  4. D.J. Skinner: inDispersion Strengthened Aluminum Alloys, Y.-W. Kim and W.M. Griffith, eds., TMS, Warrendale, PA, 1988, pp. 181–97.

    Google Scholar 

  5. G. Champier: inNew Light Alloys, AGARD Lecture Series No. 174, NATO-AGARD, Neuilly Sur Seine, France, 1990, pp. 1–21.

    Google Scholar 

  6. J.D. Cotton and M.J. Kaulfman:Metall. Trans. A, 1991, vol. 22A, pp. 927–34.

    CAS  Google Scholar 

  7. M.A. Rodriguez and D.J. Skinner:J. Mater. Sci. Lett., 1990, vol. 9, pp. 1292–93.

    Article  CAS  Google Scholar 

  8. R.E. Franck and J. Hawk:Scripta Metall., 1989, vol. 23, pp. 113–81.

    Article  CAS  Google Scholar 

  9. J. Benci and W.E. Frazier: “Evaluation of a New Aluminum Alloy for 700°F Aerospace Applications,” paper presented at TMS Annual Meeting, New Orleans, LA, 1991.

  10. E. Bouchaud, L. Kubin, and H. Octor:Metall. Trans. A, 1991, vol. 22A, pp. 1021–28.

    CAS  Google Scholar 

  11. D.J. Skinner, M.S. Zedalis, and P. Gilman:Mater. Sci. Eng., 1989, vol. A119, pp. 81–86.

    CAS  Google Scholar 

  12. G.S. Murty and M.J. Koczak:J. Mater. Sci., 1989, vol. 24, pp. 510–14.

    Article  CAS  Google Scholar 

  13. S. Mitra:Scripta Metall. Mater., 1992, vol. 27, pp. 521–26.

    Article  Google Scholar 

  14. S. Mitra and T.R. McNelley:Metall. Trans. A, 1993, vol. 24A, pp. 2589–93.

    CAS  Google Scholar 

  15. S. Mitra:J. Mater. Sci. Lett., 1994, vol. 13, pp. 1296–1300.

    Article  CAS  Google Scholar 

  16. G.M. Pharr, M.S. Zedalis, D.J. Skinner, and P.S. Gilman: inDispersion Strengthened Aluminum Alloys, Y.-W. Kim and W.M. Griffith, eds., TMS, Warrendale, PA, 1988, pp. 309–21.

    Google Scholar 

  17. D. Legzdina and T.A. Parthasarathy:Metall. Trans. A, 1987, vol. 18A, pp. 1713–19.

    CAS  Google Scholar 

  18. D. Legzdina and T.A. Parthasarathy:Metall. Trans. A, 1990, vol. 21A, pp. 2155–58.

    CAS  Google Scholar 

  19. S.C. Khatri, A. Lawley, M. Koczak, and K.G. Grassett:Mater. Sci. Eng., 1993, vol. A167, pp. 11–21.

    CAS  Google Scholar 

  20. M.K. Premkumar, A. Lawley, and M.J. Koczak:Mater. Sci. Eng., 1994, vol. A174, pp. 127–38.

    CAS  Google Scholar 

  21. Y.C. Chen, M.E. Fine, and J.R. Weertman:Acta Metall. Mater., 1990, vol. 38, pp. 771–80.

    Article  CAS  Google Scholar 

  22. R.S. Mishra, A.G. Paradkar, and K.N. Rao:Acta Metall. Mater., 1993, vol. 41, pp. 2243–51.

    Article  CAS  Google Scholar 

  23. J.E. Bird, A.K. Mukherjee, and J.E. Dorn:Trans. Am. Soc. Met., 1969, vol. 62, pp. 155–79.

    Google Scholar 

  24. O.D. Sherby, R.H. Klundt, and A.K. Miller:Metall. Trans. A, 1977, vol. 8A, pp. 843–50.

    CAS  Google Scholar 

  25. J. Lin and O.D. Sherby:Res. Mech., 1981, vol. 2, pp. 251–93.

    CAS  Google Scholar 

  26. J. Rosler and E. Artz:Acta Metall. Mater., 1990, vol. 38, pp. 671–83.

    Article  Google Scholar 

  27. E. Artz and J. Rösler: inDispersion Strengthened Aluminum Alloys, Y.-W. Kim and W.M. Griffith, eds., TMS, Warrendale, PA, 1988, pp. 31–55.

    Google Scholar 

  28. J. Weertman:J. Appl. Phys., 1957, vol. 28, pp. 1185–89.

    Article  Google Scholar 

  29. J. Weertman:J. Appl. Phys., 1957, vol. 28, pp. 362–64.

    Article  CAS  Google Scholar 

  30. G. Leroy, J.D. Embury, E. Edward, and M.F. Ashby:Acta Metall., 1981, vol. 29, pp. 1509–22.

    Article  CAS  Google Scholar 

  31. R.O. Scattergood and D.J. Bacon:Phil. Mag., 1975, vol. 31, pp. 179–98.

    CAS  Google Scholar 

  32. H.J. Frost and M.F. Ashby:Deformation Mechanism Maps, Pergamon Press, London, 1982.

    Google Scholar 

  33. E. Artz, M.F. Ashby, and R.A. Verall:Acta Metall., 1983, vol. 31, pp. 1977–89.

    Article  Google Scholar 

  34. J. Rosler, R. Joos, and E. Artz:Metall. Trans. A, 1992, vol. 23A, pp. 1521–39.

    Google Scholar 

  35. D.J. Srolovitz, R.A. Petkovic-Luton, and M.J. Luton:Phil. Mag. A, 1983, vol. 48, pp. 795–809.

    CAS  Google Scholar 

  36. E. Artz and D.S. Wilkinson:Acta Metall., 1986, vol. 34, pp. 1893–98.

    Article  Google Scholar 

  37. V.C. Nardone, D.E. Matejczyk, and J.K. Tien:Acta Metall., 1984, vol. 32, pp. 1509–17.

    Article  CAS  Google Scholar 

  38. R.W. Lund and W.D. Nix:Acta Metall., 1976, vol. 24, pp. 469–81.

    Article  CAS  Google Scholar 

  39. W.C. Oliver and W.D. Nix:Acta Metall., 1982, vol. 30, pp. 1335–47.

    Article  Google Scholar 

  40. T.R. McNelley, G.R. Edwards, and O.D. Sherby:Acta Metall., 1977, vol. 25, pp. 117–27.

    Article  CAS  Google Scholar 

  41. G.S. Ansell and J. Weertman:Trans. AIME, 1959, vol. 215, pp. 838–43.

    CAS  Google Scholar 

  42. G.R. Edwards, T.R. McNelley, and O.D. Sherby:Phil. Mag., 1975, vol. 32, pp. 1235–64.

    Google Scholar 

  43. K.-T., Park, E.J. Lavernia, and F.A. Mohamed:Acta Metall. Mater., 1990, vol. 38, pp. 1837–48.

    Article  CAS  Google Scholar 

  44. R. Lagneborg and B. Bergman:J. Met. Sci., 1976, vol. 10, pp. 20–28.

    Article  CAS  Google Scholar 

  45. M.F. Ashby and L. Johnson:Phil. Mag., 1970, vol. 20, pp. 1009–22.

    Google Scholar 

  46. M.S. Soliman and F.A. Mohamed:Mater. Sci. Eng., 1982, vol. 55, pp. 111–19;Metall. Trans. A, 1984, vol. 15A, pp. 1893–1904.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, S. Elevated temperature deformation behavior of a dispersion-strengthened Al-Fe,V,Si alloy. Metall Mater Trans A 27, 3913–3923 (1996). https://doi.org/10.1007/BF02595640

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595640

Keywords

Navigation