Skip to main content
Log in

Effects of the alumina scale on the room-temperature tensile behavior of preoxidized MA 956

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article deals with the effects of theα-Al2O3 scale (∼5µm) developed during preoxidation (1100 °C/100 hours) of MA 956 on its room-temperature tensile behavior. The tensile tests were made in the strain-rate range of 10−5 to 10−1 s−1. It is shown that the scale, fine and tightly adherent to the substrate, affects the tensile behavior in two relevant ways. First, the yield strength and the tensile strength are lowered with respect to those of the scale-free material. This is explained in terms of the residual stresses generated in the scale during preoxidation. From the analysis of the differences in the yield strength of preoxidized MA 956 with respect to the scale-free material, residual compression stresses in the scale of about 5500 MPa were obtained. These high stresses account for the surprisingly high tensile strain achieved (1.4 pct) before scale spallation occurs. Second, a ductile to brittle transition (DBT), which is not observed in the scale-free samples, occurs at intermediate strain rates (10−3 s−1). The brittle fracture is related to the increase of the triaxiality state in the substrate near the scale/metal interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Gessinger:Powder Metallurgy of Superalloys, Butterworths Monographs in Materials, Butterworth and Co., London, 1984, pp. 214–59.

    Google Scholar 

  2. Incoloy alloy MA 956, Brochure IncoMAP (Mechanically Alloyed Products), London.

  3. V. Guttmann, A. Mediavilla, and O. Ruano:Mater. High Temp., 1993, vol. 11, pp. 42–50.

    CAS  Google Scholar 

  4. D.M. Lloyd:Proc. Frontiers of High Temperature Materials II, Eds. J.S. Benjamin and R.C. Benn, Inco Alloys International (IncoMAP), London, 1983, pp. 419–41.

    Google Scholar 

  5. P.S. Sidky and M.G. Hocking:Corros. Sci., 1989, vol. 29, pp. 735–65.

    Article  Google Scholar 

  6. M.L. Escudero and J.L. González-Carrasco:Biomaterials, 1994, vol. 15, pp. 1175–80.

    Article  CAS  Google Scholar 

  7. J.M. Davidson:Proc. Frontiers of High Temperature Materials II, Eds. J.S. Benjamin and R.C. Benn, Inco Alloys International (IncoMAP), London, 1983, pp. 163–89.

    Google Scholar 

  8. T. Hughes and T. Hirst:Proc. Frontiers of High Temperature Materials II, Eds. J.S. Benjamin and R.C. Benn, Inco Alloys International (IncoMAP), London, 1983, pp. 149–62.

    Google Scholar 

  9. J.M. Davidson, C.M. Austin, and M.L. Robinson:Metall. Trans. A, 1983, vol. 14A, pp. 1516–18.

    CAS  Google Scholar 

  10. D.A. Woodford and R.H. Bricknell:Embrittlement of Engineering Alloys, Academic Press, London, 1982, pp. 157–96.

    Google Scholar 

  11. H. Nickel and W.J. Quadakkers:Heat-Resistant: Materials, Proceedings of the First International Conference, Fontana, Wisconsin, USA, 1991, pp. 87–94.

    Google Scholar 

  12. J.L. González-Carrasco, V. Guttman, and H. Fattori:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 915–24.

    Google Scholar 

  13. N.B. Pilling and R.T. Bedworth:J. Inst. Met, 1923, vol. 29, p. 529.

    Google Scholar 

  14. F.A. Kröger:Solid State Ionic, 1984, vol. 12, pp. 189–99.

    Article  Google Scholar 

  15. E. Dörre and H. Hubner:Alumina, Materials Research and Engineering, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  16. J.G. Goedijen, J.H. Stout, Q. Guo, and D.A. Shores:Mater. Sci. Eng. A, 1994, vol. 177, pp. 115–24.

    Article  Google Scholar 

  17. W.J. Quadakkers:Werkst. Korros., 1990, vol. 41, pp. 659–68.

    Article  CAS  Google Scholar 

  18. K.L. Luthra and C.L. Briant:Oxid. Met., 1987, vol. 26, pp. 397–416.

    Article  Google Scholar 

  19. J.P. Banks, D.D. Gohil, H.E. Evans, D.J. Hall, and S.R.J. Saunders:Proc. Conf. Materials for Advanced Power Engineering, Liège, Belgium, 3–6 October, 1994, Eds. D. Coutsouradis, J.H. Davidson, J. Ewald, P. Greefield, T. Khan, M. Malik, D.B. Meadowcroft, V. Regis, R.B. Scarlin, F. Shubert, D.V. Thomton, Kluwer Academic Publishers, vol. II, 1994, pp. 1543-53.

  20. G.T. Hahn:Metall. Trans. A, 1984, vol. 15A, pp. 947–59.

    CAS  Google Scholar 

  21. M. Schütze:Oxid. Met., 1995, vol. 44 (1–2), pp. 29–61.

    Article  Google Scholar 

  22. R.J. Block:J. Electrochem. Soc., 1970, vol. 117 (6), pp. 788–91.

    Article  Google Scholar 

  23. P. Mehdizadeh and R.J. Block:J. Electrochem. Soc., 1972, vol. 119 (8), pp. 1091–94.

    Article  CAS  Google Scholar 

  24. M.M. Nagl, S.R. Saunders, and V. Guttmann:Mater. High Temp., 1994, vol. 12 (2–3), pp. 163–68.

    CAS  Google Scholar 

  25. D.H. Bradhurst and J.S.L. Leach:Trans. Br. Ceram. Soc., 1963, vol. 62, pp. 793–806.

    CAS  Google Scholar 

  26. F.A. Golightly, F.H. Stott, and G.C. Wood:Werkst. Korros., 1979, vol. 30, pp. 487–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, J., González-Carrasco, J.L., Ibáñez, J. et al. Effects of the alumina scale on the room-temperature tensile behavior of preoxidized MA 956. Metall Mater Trans A 27, 3809–3816 (1996). https://doi.org/10.1007/BF02595630

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595630

Keywords

Navigation