Abstract
This paper definesintrinsic credible regions, a method to produce objective Bayesian credible regions which only depends on the assumed model and the available data.Lowest posterior loss (LPL) regions are defined as Bayesian credible regions which contain values of minimum posterior expected loss: they depend both on the loss function and on the prior specification. An invariant, information-theory based loss function, theintrinsic discrepancy is argued to be appropriate for scientific communication. Intrinsic credible regions are the lowest posterior loss regions with respect to the intrinsic discrepancy loss and the appropriate reference prior. The proposed procedure is completely general, and it is invariant under both reparametrization and marginalization. The exact derivation of intrinsic credible regions often requires numerical integration, but good analytical approximations are provided. Special attention is given to one-dimensional intrinsic credible intervals; their coverage properties show that they are always approximate (and sometimes exact) frequentist confidence intervals. The method is illustrated with a number of examples.
This is a preview of subscription content, access via your institution.
References
Barnard, G. A. (1980). Pivotal inference and the Bayesian controversy (with discussion). In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, eds.,Bayesian Statistics 1, pp. 295–318, University Press, Valencia.
Berger, J. O. (2000). Bayesian analysis: A look at today and thoughts of tomorrow.Journal of the American Statististical Association, 95:1269–1276.
Berger, J. O. andBernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors.Journal of the American Statististical Association, 84:200–207.
Berger, J. O. andBernardo, J. M. (1992a). On the development of reference priors (with discussion). In J. M. Bernardo J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds.,Bayesian Statistics 4, pp. 35–60. Oxford University Press, Oxford.
Berger, J. O. andBernardo, J. M. (1992b). Ordered group reference priors with applications to a multinomial problem.Biometrika, 79:25–37.
Berger, J. O. andBernardo, J. M. (1992c). Reference priors in a variance components problem In P. K. Goel and N. S. Iyengar, eds.,Bayesian Analysis in Statistics and Econometrics, pp. 323–340. Springer-Verlag, Berlin.
Berger, J. O. andPericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction.Journal of the American Statististical Association, 91:109–122.
Bernardo, J. M. (1979a). Expected information as expected utility.The Annals of Statistics, 7:686–690.
Bernardo, J. M. (1979b). Reference posterior distributions for Bayesian inference (with discussion).Journal of the Royal Statistical Society, Series B, 41:113–147. Reprinted inBayesian Inference (N. G. Polson and G. C. Tiao, eds.), Edward Elgar, Brookfield, VT, 1995, pp. 229–263.
Bernardo, J. M. (1997). Non-informative priors do not exist (with discussion).Journal of Statistical Planning and Inference, 65:159–189.
Bernardo, J. M. (2001). Un programa de sÃntesis para la enseñanza universitaria de la estadÃstica matemática contemporánea.Revista de la Real Academia de Ciencias Exactas, FÃsicas y Naturales (España), 95(1–2):87–105.
Bernardo, J. M. (2005a). Intrinsic point estimation of the normal variance. In S. K. Upadhyay, U. Singh, and D. K. Dey, eds.,Bayesian Statistics and its Applications. Anamaya Pub, New Delhi. In press.
Bernardo, J. M. (2005b). Reference analysis. In D. Dey and C. R. Rao, eds.,Bayesian Thinking, Modeling and Computation, vol. 25 ofHandbook of Statistics. North Holland, Amsterdam. In press
Bernardo, J. M. andJuárez, M. (2003). Intrinsic estimation. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, eds.,Bayesian Statistics 7, pp. 465–476. Oxford University Press, Oxford.
Bernardo, J. M. andRamón, J. M. (1998). An introduction to Bayesian reference analysis: Inference on the ration of multinomial parameters.Journal of the Royal Statistical Society, Series D. The Statistician, 47:1–35.
Bernardo, J. M. andRueda, R. (2002). Bayesian hypothesis testing: A reference approach.International Statistical Review, 70:351–372.
Bernardo, J. M. andSmith, A. F. M. (1994).Bayesian Theory, John Wiley & Sons, Chichester.
Blyth, C. R. (1986). Approximate binomial confidence limits.Journal of the American Statististical Association, 81:843–855.
Blyth, C. R. andStill, H. A. (1983). Binomial confidence intervals.Journal of the American Statististical Association, 78:108–116.
Brown, L. (1968). Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters.Annals of Mathematics and Statistics 39:29–48.
Brown, L. D., Cai, T. T., andDasGupta, A. (2001). Interval estimation for a binomial proportion (with discussion).Statistical Science, 16:101–133.
Brown, L. D., Cai, T. T., andDasGupta, A. (2002). Confidence intervals for a binomial proportion and Edgeworth expansion.The Annals of Statistics, 30(1):160–201.
Burdick, R. K. andGraybill, F. A. (1992).Confidence Intervals on Variance Components. Marcel Dekker, New York.
Cano, J. A., Hernández, A., andMoreno, E. (1987). A note on maximized likelihood sets.European Journal of Operational Research, 32:291–293.
Casella, G. (1986). Refining binomial confidence intervals.The Canadian Journal of Statistics, 14:113–129.
Casella, G., Hwang, J. T., andRobert, C. P. (1993). A paradox in decision-theoretic set estimation.Statistica Sinica, 3:141–155.
Casella, G., Hwang, J. T. andRobert, C. P. (1994). Loss function for set estimation. In J. O. Berger and S. S. Gupta, eds.,Statistical Decision Theory and Related Topics, V, pp. 237–252. Springer Verlag, New York.
Datta, G. S. andMukerjee, R. (2004).Probability Matching Priors: Higher Order Asymptotics vol. 178 ofLecture Notes in Statistics. Springer Verlag, New York.
Data, G. S. andSweeting, T. (2005). Probability matching priors. In D. Dey and C. R. Rao, eds.,Bayesian Thinking, Modeling and Computation, vol. 25 ofHandbook of Statistics, North Holland, Amsterdam. In press.
de Finetti, B. (1970).Teoria delle Probabilità . Einaudi, Turin, English translation asTheory of Probability in 1974. John Wiley & Sons, Chichester.
Eberly, L. E. andCasella, G. (2003). Estimating Bayesian credible intervals.Journal of Statistical Planning and Inference, 112:115–132.
Efron, B. (1987). Better bootstrap confidence intervals (with discussion).Journal of the American Statististical Association, 82:171–200.
George, E. I. andMcCulloch, R. E. (1993). On obtaining invariant prior distributions.Journal of Statistical Planning and Inference, 37:169–179.
Geyer, C. J. andMeeden, G. D. (2005) Fuzzy and randomized confidence intervals andp-values (with discussion).Statistical Science. To appear.
Gleser, L. andHwang, J. T. (1987). The nonexistence of 100(1−α) confidence sets of finite expected diameter in errors-in-variable and related models.The Annals of Statistics, 15:1351–1362.
Granger, C. andLin, J.-L. (1994). Using the mutual information coefficient to identify lags in nonlinear models.The Journal of Time series Analysis, 15(4):371–384.
Gutiérrez-Peña, E. (1992). Expected logarithmic divergence for exponential families. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds.,Bayesian Statistics 4, pp. 669–674. Oxford University Press, Oxford.
Guttman, I. (1970).Statistical Tolerance Regions: Classical and Bayesian. Griffin, London.
Hahn, G. J. andMeeker, W. Q. (1991).Statistical Intervals. John Wiley & Sons, Chichester.
Hartigan, J. A. (1966). Note on the confidence prior of Welch and Peers.Journal of the Royal Statistical Society. Series B, 28:55–56.
Hartigan, J. A. (1983).Bayes Theory. Springer-Verlag. Berlin.
Joe, H. (1989). Relative entropy measures of multivariate dependence.The Journal of American Statistical Association, 405:157–164.
Juárez, M. (2004).Métodos Bayesianos Objetivos de Estimación y Contraste de Hipótesis. PhD Thesis, Universidad de Valencia, Spain.
Kullback, S. (1968).Information Theory and Statistics. Dover, New York, 2nd ed. Reprinted in 1978, Peter Smith, Gloucester, MA.
Kullback, S. andLeibler, R. A. (1951). On information and sufficiency.Annals of Mathematics and Statistics, 22:79–86.
Lindley, D. V. (1958). Fiducial distribution and Bayes' Theorem.Journal of the Royal Statistical Society. Series B, 20:102–107.
Lindley, D. V. (1970).Introduction to Probability and Statistics from a Bayesian Viewpoint. Part 2: Inference, Cambridge University Press, Cambridge.
Peña, D. andvan der Linde, A. (2005). General measures of variability and dependence for multivariate continuous distribution. Manuscript submitted for publication.
Piccinato, L. (1984). A Bayesian property of the likelihood sets.Statistica, 3:367–372.
Robert, C. P. (1996). Intrinsic loss functionsTheory and Decision, 40:192–214.
Robert, C. P. (2001).The Bayesian Choice, Springer Verlag, New York, 2nd ed.
Robert, C. P. andCasella, G. (1994). Distance penalized losses for testing and confidence set evaluation.Test, 3(1):163–182.
Robinson, P. (1991). Consistent nonparametric entropy-based testing.Review of Economic Studies, 58:437–453.
Rousseau, J. (1997). Expansions of penalized likelihood ratio statistics and consequences on matching priors for HPD regions. Tech. rep., CREST, INSEE, Paris.
Savage, L. J. (1954).The Foundations of Statistics. John Wiley & Sons, New York. Second edition in 1972, Dover, New York.
Schervish, M. J. (1995).Theory of Statistics, Springer-Verlag, Berlin.
Wasserman, L. (1989). A robust Bayesian interpretation of likelihood regions.The Annals of Statistics, 17:1387–1393.
Welch, B. L. andPeers, H. W. (1963). On formulae for confidence points based on intervals of weighted likelihoods.Journal of the Royal Statistical Society. Series B, 25:318–329.
Author information
Authors and Affiliations
Corresponding author
Additional information
Work partially supported by grant MTM2004-05956 of MEC, Madrid, Spain
Rights and permissions
About this article
Cite this article
Bernardo, J.M. Intrinsic credible regions: An objective Bayesian approach to interval estimation. TEST 14, 317–384 (2005). https://doi.org/10.1007/BF02595408
Issue Date:
DOI: https://doi.org/10.1007/BF02595408
Key Words
- Amount of information
- intrinsic discrepancy
- Bayesian asymptotics
- confidence intervals
- Fisher information
- HPD regions
- interval estimation
- Jeffreys priors
- LPL regions
- objective priors
- reference priors
- point estimation
- probability centred intervals
- region estimation