Skip to main content
Log in

In vitro quantitative study of fibre optic XeCI laser angioplasty. Influence of lasing medium and adventitial resistance to photoablation

  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

In this paper, we present a comparative study of atheromatous human plaque photoablation at 308 nm in air, saline or blood, with the tip of the laser energy delivering fibre in close contact with the sample. The ablation depth, measured on histological sections, is given as a function of the number of shots at different laser fluences. The photoablation efficiency depends mostly on the pathological state of the artery rather than on the irradiation medium A clear resistance of the adventitia to 308 nm photoablation is demonstrated in all media. This finding may be an important safety factor for XeCl human coronary angioplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanborn TA. Laser angioplasty. What has been learned from experimental studies and clinical trials?Circulation 1988,78:769–74

    PubMed  CAS  Google Scholar 

  2. Isner JM, Steg PG, Clarke RH. Current status of cardiovascular laser therapy.IEEE J Quantum Electron 1987,23:1756–71

    Article  Google Scholar 

  3. Choy DSJ, Stertzer SH, Rotterdam HZ, Bruno MS. Laser coronary angioplasty: experience with 9 cadaver hearts.Am J Cardiol 1982,50:1209–11

    Article  PubMed  CAS  Google Scholar 

  4. Abela GS, Normann S, Cohen D et al. Effects of carbon dioxide, Nd-Yag and argon laser radiation on coronary atheromatous plaques.Am J Cardiol 1982,50:1199–205

    Article  PubMed  CAS  Google Scholar 

  5. Ollivier JP, Rossant P, Gandjbakhch I et al. Effets de différents types de lasers à emission continue sur les plaques athéromateuse humaines in vitro.Arch Mal Coeur 1985,4:554–8

    Google Scholar 

  6. Hiehle JF, Bourgelais DBC, Shapshay S et al. Nd-Yag laser fusion of human atheromatous plaque. Arterial wall separations in vitro.Am J Cardiol 1985,56:953–7

    Article  PubMed  Google Scholar 

  7. Lee G, Ikeda R, Herman I et al. The qualitative effects of laser irradiation on human arteriosclerotic disease.Am Heart J 1983,105:885–9

    Article  PubMed  CAS  Google Scholar 

  8. Isner JM, Donaldson RF, Funai JT et al. Factors contributing to perforations resulting from laser coronary angioplasty: observations in an intact human postmortem preparation of intraoperative laser coronary angioplasty.Circulation 1985,72:191–9

    Google Scholar 

  9. Deckelbaum LI, Isner JM, Donaldson RF et al. Reduction of laser-induced pathologic injury using pulsed energy delivery.Am J Cardiol 1985,56:662–7

    Article  PubMed  CAS  Google Scholar 

  10. Linsker R, Srinivasan R, Wynne JJ, Alonso DR. Farultraviolet laser ablation of atherosclerotic lesions.Lasers Surg Med 1984,4:201–6

    Article  PubMed  CAS  Google Scholar 

  11. Singleton DL, Paraskevopoulos G, Taylor RS, Higginson LAJ. Excimer laser angioplasty: tissue ablation, arterial response and fiber optic delivery.IEEE J Quantum Electron 1987,23:1772–82

    Article  Google Scholar 

  12. Svrinivasan R, Leigh WJ. Ablative photodecomposition: action of far-ultraviolet (193 nm) laser radiation on poly(ethylene terephthalate) films.J Am Chem Soc 1982,104:6784–5

    Article  Google Scholar 

  13. Koren G, Yeh JTC. Emission spectra surface quality and mechanism of excimer laser etching of polyimide films.Appl Phys Lett 1984,44:1112–4

    Article  CAS  Google Scholar 

  14. Koren G. Yeh JTC. Emission spectra and etching of polymers and graphite irradiated by excimer lasers.J Appl Phys 1984,56:2120–6

    Article  CAS  Google Scholar 

  15. Dyer PE, Sidhu J. Excimer laser ablation and thermal coupling efficiency to polymer films.J Appl Phys 1985,57:1420–2

    Article  CAS  Google Scholar 

  16. Lazare S, Granier V. Ultraviolet laser photoablation of polymers: a review and recent results.Laser Chem 1989,10:25–40

    CAS  Google Scholar 

  17. Lane RJ, Linsker R, Wynne JJ et al. Ultraviolet laser ablation of skin.Arch Dermatol 1985,121:609–17

    Article  PubMed  CAS  Google Scholar 

  18. Murphy-Chutorian D, Selzer PM, Kosek J et al. The interaction between excimer laser energy and vascular tissue.Am Heart J 1986, 1112:739–45

    Article  Google Scholar 

  19. Abil'siitov GA, Belyaev AA, Bragin MA et al. Investigation of photoablation of atherosclerotic plaques by laser radiation.Sov J Quantum Electron 1985,15:1314–6

    Article  Google Scholar 

  20. Furzikov NP, Karu TI, Letokhov VS et al. Relative efficiency and products of atherosclerotic plaque destruction by pulsed laser radiation.Lasers Life Sci 1987,1:265–4

    Google Scholar 

  21. Prevosti LG, Cook JA, Leon MB, Bonner RF. Comparison of particulate debris size from excimer and argon laser ablation.Circulation 1987,76(abst):IV-410

    Google Scholar 

  22. Wieshammer S, Hibst R, Bellekens M, Steiner R. Ultraviolet laser ablation of biologic tissue. Quantitation of each rate as a function of incident fluence.Lasers Life Sci 1988,2:125–35

    Google Scholar 

  23. Grundfest WS, Litvack F, Forrester JS et al. Laser ablation of human atherosclerotic plaque without adjacent tissue injury.JAAC 1985,5:929–33

    CAS  Google Scholar 

  24. Ollivier JP, Gandjbakhch I, Avrillier S et al. Intraoperative excimer laser coronary artery endarterectomy.J Thorac Cardio Vasc Surg 1990,100:606–10

    CAS  Google Scholar 

  25. Ollivier JP, Avrillier S, Gandjbakhch I et al. In vivo excimer laser coronary angioplasty in humans: preliminary results.Eur Heart J 1988,9:331

    Google Scholar 

  26. Litvack F, Grundfest W, Goldenberg T, Laudenslager J, Forrester JC. Percutaneous excimer laser angioplasty of aortocoronary saphenous vein grafts.JACC 1989,14:803–8

    PubMed  CAS  Google Scholar 

  27. Ischinger T, Coppenrath K, Pesarini A et al. Percutaneous transluminal peripheral and coronary excimer laser angioplasty.Laser Med Surg 1989,5:138–42

    Google Scholar 

  28. Taylor RS, Singleton DL, Paraskevopoulos G. Effect of optical pulse duration on the XeCl laser ablation of polymers and biological tissue.Appl Phys Lett 1987,50:1779–81

    Article  CAS  Google Scholar 

  29. Bowker TJ, Cross FW, Rumsby PT et al. Excimer laser angioplasty: quantitative comparison in vitro of three ultraviolet wavelengths on tissue ablation and haemolysis.Lasers Med Sci 1986,1:91–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delettre, E., Avrillier, S., Rougier, Y. et al. In vitro quantitative study of fibre optic XeCI laser angioplasty. Influence of lasing medium and adventitial resistance to photoablation. Laser Med Sci 7, 111–119 (1992). https://doi.org/10.1007/BF02594060

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02594060

Key words

Navigation