Lasers in Medical Science

, Volume 3, Issue 1–4, pp 35–39 | Cite as

Biological effect of low-power helium-neon (HeNe) laser irradiation

  • Timea Berki
  • P. Németh
  • J. Hegedüs


The functional effects (activation and cell damage) of low-power, continuous-wave HeNe laser irradiation were studied in different in vitro cultured cell lines. A characteristic dose-dependence was observed between 0.14 and 28.0 J/cm2. The functional activation (increased phagocytic activity, immunoglobulin secretion) or cell destruction could not be detected after irradiation by normal monochromatic light of the same wavelength and energy output. The experiments suggested that low-power laser irradiation has a specific influence on the cells which depends on the coherent and polarized physical features of the laser light.

Key words

HeNe laser Laser biology Photoactivation Hybridoma application Cell culture Immunoglobulin production Phagocytosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vourc'h G, Personne CI, Colchen A, Toty L. Laser treatment for carcinoma of the bronchus.Br Med J 1983,286:6369–81Google Scholar
  2. 2.
    Apfelberg DB, Mittelman H, Chadi B. Carcinogenic potential of in vitro carbon dioxide laser exposure of fibroblasts.Obst Gyn 1983,61:4–12Google Scholar
  3. 3.
    Cummins L, Nauenberg M. Thermal effect of laser radiation in biological tissue.Biophys J 1983,42:99–103PubMedCrossRefGoogle Scholar
  4. 4.
    Kamat B, Carney M, Arndt K et al. Cutaneous tissue repair following CO2 laser irradiation.Lab Invest 1986,54:3017Google Scholar
  5. 5.
    Mester E, Mester AF, Mester A. The biomedical effects of laser application.Lasers Surg Med 1985,5:31–9PubMedCrossRefGoogle Scholar
  6. 6.
    Kovács L. The stimulatory effect of laser on the physiological healing process of portio surface.Lasers Surg Med 1981,1:241–3PubMedCrossRefGoogle Scholar
  7. 7.
    Moan J, Johannesen T, Christensen T et al. Porphyrin-sensitized photoinactivation of human cells in vitro.Am J Path 1982,109:184–92PubMedGoogle Scholar
  8. 8.
    Moan J. Porphyrin photosensitization and phototherapy.Photochem Photobiol 1986,43:681–90PubMedGoogle Scholar
  9. 9.
    Kövy MB, Tisza S, Eöry A. Veranderung der Parameter auf der Hautoberflache infolge der Einwirkung von Softlasern. In: Waidelich W, Kiefhaber P (eds)Laser Optoelectronic in der Medicine. Berlin, Heidelberg, New York, Tokyo: Springer Verlag, 1986:144–8Google Scholar
  10. 10.
    Tisza S, Kövy MB. The biological effect of the He−Ne laser radiation on the human skin of the face used in point-like and area-like application.Biochim Biophys Acta 1985,20:93–6Google Scholar
  11. 11.
    Bosatra M, Jucci A, Olliaro P et al. In vitro fibroblast and dermis fibroblast activation by laser irradiation at low energy.Dermatol 1984,168:157–61CrossRefGoogle Scholar
  12. 12.
    Koonce MP, Strahs KR, Berns MW. Repair of laser served stress fibers in myocardial non-muscle cells.Exp Cell Res 1982,141:375–85PubMedCrossRefGoogle Scholar
  13. 13.
    Kupin VI, Bykov VS, Ivanov AV, Larichew VY. Potentiating effect of laser radiation on some immunological traits.Neopl 1982,29:403–6Google Scholar
  14. 14.
    Dyson M, Neimikoski J. Stimulation of tissue repair of therapeutic ultrasound.Inf Surg 1982,37:44–7Google Scholar
  15. 15.
    Kamocsay D. Ultrasound in gynecology.Am J Phys Med 1958,37:196–200PubMedGoogle Scholar
  16. 16.
    Doiron D, Svaasand L, Profio A. Light dosimetry in tissue: application to photoradiation therapy. In: Kessel D, Dougherty TJ (eds)Porphyrin photosensitization. New York: Plenum, 1983:63–76Google Scholar
  17. 17.
    Berki T, Németh P, Hegedüs J. Effect of low-power, continuous-wave He−Ne laser irradiation on in vitro cultured lymphatic cell lines and macrophages.Studia Biophys 1985,105:141–8Google Scholar
  18. 18.
    Schulman M, Wilde CD, Köhler G. A better cell line making hybridomas secreting specific antibodies.Nature 1978,276:269–71CrossRefGoogle Scholar
  19. 19.
    Németh P, Monostori È, Zongor Gy. Monoclonal anti-SOD (superoxide dismutase) antibody. ETCS-EURES Congress, Budapest, 1983Google Scholar
  20. 20.
    Németh P, Rácz L, Varga J et al. Changes of serum superoxide dismutase content in Gramoxone poisoned patients, measured by anti-SOD monoclonal antibody.Arch Toxicol Suppl 1985,8:283Google Scholar
  21. 21.
    Böttcher I, Hammerling G, Kapp JF. Continuous production of monoclonal mouse IgE antibodies with known allergenic specificity by a hybrid cell line.Nature 1978,275:761–8PubMedCrossRefGoogle Scholar
  22. 22.
    Németh P, Bebök Zs, Balogh P et al. Effect of specific antigen on the growth of in vitro cultured hybridoma cells.Ann Immunol Hung 1986,26:1055–65Google Scholar
  23. 23.
    Najbauer J, Tigyi GJ, Németh P. Antigen-specific cell adherence assay: a new method for separation of antigen specific hybridoma cells.Hybridoma 1986,5:361–72PubMedCrossRefGoogle Scholar
  24. 24.
    Schon-Hegrad MA, Holt PG. Improved method for the isolation of purified mouse peritoneal macrophages.J Imm Meth 1981,43:169–73CrossRefGoogle Scholar
  25. 25.
    Tennant JR. Evaluation of trypan blue technic for determination of cell viability.Transplantation 1964,2:685–7PubMedCrossRefGoogle Scholar
  26. 26.
    Engwall E, Perlman P. Enzyme-linked immunosorbent assay, ELISA. 3. Quantitation of specific antibodies by enzyme labelled anti-immunoglobulin in antigen coated tubes.J Immunol 1972,109:129–42Google Scholar
  27. 27.
    Szent-Györgyi A. The living state and cancer.Proc Natl Acad Sci USA 1977,74:2844–59PubMedCrossRefGoogle Scholar
  28. 28.
    Passerella S, Casamassima E, Padolecchia M, Quagliariello E. Certain features of the effects of NADH irradiation by He−Ne laser in the activities of different lactate dehydrogenases: constance of effect with time and energy dose dependence.Bull Molec Biol Med 1982,7:1–2Google Scholar
  29. 29.
    Matheson IBC, Lee J. Reaction of chemical acceptors with singlet oxygen produced by direct laser excitation.Chem Phys Lett 1970,7:475–6CrossRefGoogle Scholar
  30. 30.
    Shun-Ichi Kurata, Motowo Tsukakoshi, Takahiro Kasuya, Yoji Ikawa. The laser method for efficient introduction of foreign DNA into cultured cells.Exp Cell Res 1986,162:372–8PubMedCrossRefGoogle Scholar
  31. 31.
    Murphy GF, Shepard RS, Paul BS et al. Organellum specific injury of melanin containing cells in human skin by pulsed laser irradiation.Lab Invest 1983,49:680–5PubMedGoogle Scholar

Copyright information

© Baillière Tindall 1988

Authors and Affiliations

  • Timea Berki
    • 1
  • P. Németh
    • 1
  • J. Hegedüs
    • 2
  1. 1.Department of PathologyMedical University of PécsPécsHungary
  2. 2.Central Electrotechnical LaboratoriesMedical University of PécsHungary

Personalised recommendations