Lasers in Medical Science

, Volume 3, Issue 1–4, pp 27–34 | Cite as

Early morphological changes induced by photodynamic therapy in amelanotic greene melanoma implanted in the anterior eye chamber of rabbits

  • N. A. P. Franken
  • G. F. J. M. Vrensen
  • J. L. Van Delft
  • D. De Wolff-Rouendaal
  • T. M. A. R. Dubbelman
  • J. A. Oosterhuis
  • W. M. Star
  • J. P. A. Marijnissen


Morphological changes induced by photodynamic therapy (PDT) in amelanotic Greene melanoma implanted in the anterior eye chamber of rabbits were followed up to 24 h after PDT to study the development of tissue and cell damage leading to necrosis.

Immediately after PDT, blood circulation had stopped as shown by fluorescence angiography and light and electron microscopy. It was not restored during the observation period.

The first signs of tumour tissue damage, shrinkage of tumour cells and enlargement of intracellular spaces, became apparent immediately after PDT. Tissue and cell destruction increased further, and 24 h after PDT the tumours were almost completely necrotic.

The most intriguing finding, by electron microscopy, was the presence of mitochondria with fused membranes in the untreated melanoma cells and the dramatic increase of this aberration directly after PDT. Melanocytes and fibroblasts in the same regions did not exhibit these aberrant mitochondria and furthermore kept a normal fine structure after PDT. Artificially induced ischaemia led to swollen mitochondria with ballooned cristae but showed no increase in membrane fusions. PDT thus directly interferes with mitochondrial structure. Direct damage to tumour cells therefore presumably contributes to tumour necrosis.

Key words

Haematoporphyrin derivative Photodynamic therapy Melanoma Mitochondria Light microscopy Electron microscopy Tissue and cell morphology Development of necrosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schuller DE, McCaughan JS, Rock RP. Photodynamic therapy in head and neck cancer.Arch Otolaryngol 1985,111:351–5PubMedGoogle Scholar
  2. 2.
    Benson RC. Treatment of diffuse transitional cell carcinoma in situ by whole bladder hematoporphyrin derivative photodynamic therapy.J. Urol 1985,134:675–8PubMedGoogle Scholar
  3. 3.
    Kato H, Konaka C, Ono J et al. Preoperative laser photodynamic therapy in combination with operation in lung cancer.J Thorac Cardiovasc Surg 1985,90:420–9PubMedGoogle Scholar
  4. 4.
    Kato H, Kawaguchi M, Konaka C et al. Evaluation of photodynamic therapy in gastric cancer.Lasers Med Sci 1986,1:67–74CrossRefGoogle Scholar
  5. 5.
    Herrera-Ornelas L, Petrelli NJ, Mittelman A et al. Photodynamic therapy in patients with colorectal cancer.Cancer 1986,57:677–84PubMedCrossRefGoogle Scholar
  6. 6.
    Berns MW, Wile AG. Hematoporphyrin phototherapy of cancer.Radiotherapy and Oncol 1986,7:233–40CrossRefGoogle Scholar
  7. 7.
    Lam S, Müller NL, Miller RR et al. Predicting the response of obstructive endobronchial tumors to photodynamic therapy.Cancer 1986,58:2298–306PubMedCrossRefGoogle Scholar
  8. 8.
    Wan S, Parrish JA, Anderson RR, Madden M. Transmittance of non-ionizing radiation in human tissues.Photochem Photobiol 1981,34:679–81PubMedGoogle Scholar
  9. 9.
    Franken KAP, van Delft JL, Dubbelman TMAR et al. Hematoporphyrin derivative photoradiation treatment of experimental malignant melanoma in the anterior chamber of the rabbit.Current Eye Res 1985,4:641–54Google Scholar
  10. 10.
    Star WM, Marijnissen HPA, van den Berg-Blok AE et al. Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers.Cancer Res 1986,46:2532–40PubMedGoogle Scholar
  11. 11.
    Selman SH, Kreimer-Birnbaum M, Klaunig JE et al. Blood flow in transplantable bladder tumors treated with hematoporphyrin derivative and light.Cancer Res 1984,44:1924–7PubMedGoogle Scholar
  12. 12.
    Moan J, McGhie J, Jacobson PB. Photodynamic effects on cells in vitro exposed to hematoporphyrin derivative and light.Photochem Photobiol 1983,37:599–604PubMedGoogle Scholar
  13. 13.
    Gomer CJ, Smith DM. Photoinactivation of Chinese hamster cells by hematoporphyrin derivative and red light.Photochem Photobiol 1980,32:341–3PubMedGoogle Scholar
  14. 14.
    Weishaupt KR, Gomer CJ, Dougherty TJ. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor.Cancer Res 1976,36:2326–9PubMedGoogle Scholar
  15. 15.
    Henderson BW, Miller AC. Effects of scavengers of reactive oxygen and radical species on cell survival following photodynamic treatment in vitro: comparison to ionizing radiation.Radiation Res 1986,108:196–205PubMedCrossRefGoogle Scholar
  16. 16.
    Dubbelman TMAR, van Steveninck J. Photodynamic effect of hematoporphyrin-derivative on transmembrane transport systems of murine L929 fibroblasts.Biochim Biophys Acta 1984,771:201–7PubMedCrossRefGoogle Scholar
  17. 17.
    Boegheim JPJ, Dubbelman TMAR, Mullenders LHF, van Steveninck J. Photodynamic effect of hematoporphyrin derivative on DNA repair in murine L929 fibroblasts.Biochem J 1987,244:711–5PubMedGoogle Scholar
  18. 18.
    Hilf R, Murant RS, Narayanan U, Gibson SL. Relationship of mitochondrial function and cellular adenosine triphosphate levels to hematoporphyrin derivative-induced, photosensitization in R3230AC mammary tumors.Cancer Res 1986,46:211–7PubMedGoogle Scholar
  19. 19.
    Greene HSN, Harvey EK. The growth and metastasis of amelanotic melanomas in heterologous hosts.Cancer Res 1966,26:706–14PubMedGoogle Scholar
  20. 20.
    Peters A. The fixation of central nervous tissue and the analysis of electron micrographs of the neurophil with special reference to the cerebral cortex. In: Nauta WJH, Ebbeson SOE (eds)Contemporary research methods in neuroanatomy. New York: Springer, 1970:56–76Google Scholar
  21. 21.
    Palade GE. A study of fixation for electron microscopy.J Exp Med 1952,95:285–98PubMedCrossRefGoogle Scholar
  22. 22.
    de Groot PG, Reinders JH, Sixma JJ. Perturbation of human endothelial cells by thrombin or PMA changes the reactivity of their extracellular matrix towards platelets.J Cell Biol 1987,104:697–704PubMedCrossRefGoogle Scholar
  23. 23.
    Ghiadially FN. Mitochondrial changes in neoplasia. In: Ghiadially FN (ed)Ultrastructural pathology of the cell and matrix. London: Butterworths, 1982:228–31Google Scholar
  24. 24.
    Klaunig JE, Selman SH, Shulok JR et al. Morphologic studies of bladder tumors treated with hematoporphyrin derivative photochemotherapy.Am J Pathol 1985,119:236–43PubMedGoogle Scholar
  25. 25.
    Lipson R, Baldes C, Olsen A. The use of a derivative of hematoporphyrin in tumor detection.J Natl Cancer Inst 1961,26:1–8PubMedGoogle Scholar

Copyright information

© Baillière Tindall 1998

Authors and Affiliations

  • N. A. P. Franken
    • 1
  • G. F. J. M. Vrensen
    • 1
    • 2
  • J. L. Van Delft
    • 1
  • D. De Wolff-Rouendaal
    • 1
  • T. M. A. R. Dubbelman
    • 3
  • J. A. Oosterhuis
    • 1
  • W. M. Star
    • 4
  • J. P. A. Marijnissen
    • 4
  1. 1.Department of OphthalmologyAcademic Hospital and State University of LeidenThe Netherlands
  2. 2.Department of MorphologyThe Netherlands Ophthalmic Research InstituteAmsterdamThe Netherlands
  3. 3.Department of Medical Biochemistry of the State University of LeidenLeidenThe Netherlands
  4. 4.Department of Physics, Daniel den Hoed ClinicRotterdam Radiotherapeutic InstituteRotterdamThe Netherlands

Personalised recommendations