Skip to main content
Log in

Oxidized low-density lipoprotein and atherosclerosis

  • Review
  • Published:
International Journal of Clinical and Laboratory Research

Abstract

Atherosclerosis is the leading cause of morbidity and mortality in western society. The most important risk factors for atherosclerosis include smoking, hypertension, dyslipidemia, diabetes and a family history of premature atherosclerosis. Several studies indicate that an increased plasma low density lipoprotein (LDL) cholesterol constitutes a major risk factor for atherosclerosis. Many data support a proatherogenic role for oxidized LDL and its in vivo existence. The oxidative susceptibility of LDL is increased with established cardiovascular risk factors, such as diabetes, smoking and dyslipidemia. Supplementation with antioxidants such as ascorbate and alpha-tocopherol can decrease LDL oxidation as well as cardiovascular mortality and thus shows promise in the prevention of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kannel WB, Castelli WP, Gordon T. Cholesterol in the prediction of atherosclerotic disease: new perspectives based on the Framingham study. Ann Intern Med 1979; 90: 85.

    PubMed  CAS  Google Scholar 

  2. Gordon T, Kannel WB, Castelli WP, Dawber TR. Lipoproteins, cardiovascular disease and death. The Framingham study. Arch Intern Med 1981; 141: 1128.

    Article  PubMed  CAS  Google Scholar 

  3. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991; 88: 1785.

    PubMed  CAS  Google Scholar 

  4. Steinbrecher UP, Zhang H, Longheed M. Role of oxidatively modified LDL in athrosclerosis. Free Radic Biol Med 1990: 9: 155.

    Article  PubMed  CAS  Google Scholar 

  5. Jialal I, Grundy SM. Influence of antioxidant vitamins in LDL oxidation. Ann NY Acad Sci 1992; 669: 2327.

    Article  Google Scholar 

  6. Heinecke JW, Baker H, Rosen H, Chait A. Superoxide mediated modification of LDL by human arterial smooth muscle cells. J Clin Invest 1986; 77: 757.

    PubMed  CAS  Google Scholar 

  7. Cathcart MK, Morel DW, Chisolm GM. Monocytes and neutrophils oxidize LDL making it cytotoxic. J Leukoc Biol 1985; 38: 341

    PubMed  CAS  Google Scholar 

  8. Hiramatsu K., Rosen H, Heinecke JW, Wolfbauer G, Chait A. Superoxide initiates oxidation of LDL by human monocytes. Arteriosclerosis 1987; 7: 55.

    PubMed  CAS  Google Scholar 

  9. Heinecke JW, Kawamura M, Suzuki L, Chait A. Oxidation of LDL by thiols: superoxide dependent and independent mechanisms. J Lipid Res 1993; 34: 2051.

    PubMed  CAS  Google Scholar 

  10. Sparrow CP, Parthasarathy S, Steinberg D. Enzymatic modification of LDL by purified lipoxygenase plus phospholipase A2 mimicks cell-mediated oxidative modification. J Lipid Res 1988; 29: 749.

    Google Scholar 

  11. Yla Herttuala S, Rosenfeld ME, Parthasarathy S, Glass GK, Sigal E, Witztum JL, Steinberg D. Colocalisation of 15-lipoxygenase mRNA and protein with epitopes of oxidized LDL in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci USA 1989; 86:1046.

    Article  Google Scholar 

  12. Savenkova MI, Mueller DM, Heinecke JW. Tyrosyl radical generated by myeloperoxidase; a physiological catalyst for the initiation of lipid peroxidation in LDL. J Biol Chem 1994; 269: 20394.

    PubMed  CAS  Google Scholar 

  13. Hazfil LJ, Stocker R. Oxidation of LDL with hypochlorite causes transformation of the lipoprotein into a high uptake form for macrophages. Biochem J 1993; 90: 165.

    Google Scholar 

  14. Daugherty A, Rateri DL, Dunn JL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 1994; 94: 437.

    PubMed  CAS  Google Scholar 

  15. Hogg N, Darley Usmar DM, Graham A, Moncada S. Peroxynitrite and atherosclerosis. Biochem Soc Trans 1993; 21: 358.

    PubMed  CAS  Google Scholar 

  16. Jessup W, Mohr D, Gieseg SP, Dean RT, Stocker R. The participation of nitric oxide in cell free and its restriction of macrophage mediated oxidation of LDL by mouse macrophages. FEBS Lett 1992; 309: 135.

    Article  Google Scholar 

  17. Boulanger CM, Tanner PC, Bea MI, Hahn AWA, Werner A, Luscher TF. Oxidized LDL induced mRNA expression and release of endothelin from human and porcine endothelium. 1992

  18. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM. LDL subclass patterns and risk of myocardial infarction. JAMA 1988; 260: 1917.

    Article  PubMed  CAS  Google Scholar 

  19. Tribble DL, Holl LG, Wood PD, Krauss RM. Variations in oxidative susceptibility of LDL subfractions of differing density and particle size. Atherosclerosis 1992; 93: 89.

    Article  Google Scholar 

  20. Chait A, Brazg RL, Tribble DL, Krauss RM. Susceptibility of small dense LDL to oxidative modification in subject with the atherogenic lipoprotein phenotype pattern B. Am J Med 1993; 94: 350.

    Article  PubMed  CAS  Google Scholar 

  21. Esterbauer H, Gebicki J, Puhl H, Jurgens G. The role of lipid peroxidation and antioxidants in the oxidative modification of LDL. Free Radic Biol Med 1992; 13: 341.

    Article  PubMed  CAS  Google Scholar 

  22. Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, et al. A therosclerosis: basic mechanisms, oxidation, inflammation and genetics. Circulation 1995; 91:2488.

    PubMed  CAS  Google Scholar 

  23. Endemann G, Stanton LW, Maddon KS, Bryant CM, White RT, Protter AA. CD36 is a receptor for oxidized LDL. J Biol Chem 1993; 268: 18811.

    Google Scholar 

  24. Sambrano GR, Parthasarathy S, Steinberg D. Recognition of oxidtively damaged erythrocytes by a macrophage receptor with specificity for oxidized LDL. Proc Natl Acad Sci USA 1994; 91: 3265.

    Article  PubMed  CAS  Google Scholar 

  25. Thomas CE, Jackson RL, Ohlweiler DF, Ku J. Multiple lipid oxidation products in LDL induce interleukin 1 b release from human blood mononuclear cells. J Lipid Res 1994; 35: 417.

    PubMed  CAS  Google Scholar 

  26. Libby P, Hanson GK. Involvement of the human immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest 1991; 64: 5.

    PubMed  CAS  Google Scholar 

  27. Drake TA, Hanani K, Fei H, Lavi S, Berliner JA. Minimally oxidized LDL induces tissue factor expression in cultured human endothelial cells. Am J Pathol 1991; 138: 601.

    PubMed  CAS  Google Scholar 

  28. Latron Y, Chauhan M, Anfosso F, Alessi MC, Nalbone G, Lafont H, et al. Stimulating effect of oxidized LDL on plasminogen activator inhibitor-1 synthesis by endothelial cells. Arterioscler Thromb 1991; 11: 1821.

    PubMed  CAS  Google Scholar 

  29. Ohgushi M, Kugiyama K, Fukunaga K, Morohara T, Sugiyama S, Miyamoto E, et al. Protein kinase C inhibitors prevent impairment of endothelium dependent relaxation by oxidatively modified LDL. Arterioscler Thromb 1993; 13: 1525.

    PubMed  CAS  Google Scholar 

  30. Gisinger C, Virella GT, Lopez Virella MF. Erythrocyte bound LDL immune complexes lead to cholesterol accumulation in human monocyte derived macrophages. Clin Immunol Immunopathol 1991; 59: 37.

    Article  PubMed  CAS  Google Scholar 

  31. Yla Herttuala S Palinski W, Rosenfeld M, Parthasarathy S, Carew TE, Butler S, et al. Evidence for the presence of oxidatively modified LDL in atherosclerotic lesions of rabbit and man. J Clin Invest 1989; 284: 1086.

    Google Scholar 

  32. Bellomo G, Maggi E, Poli M, Agosta FG, Bollati P, Finardi G. Autoantibodies against oxidatively modified LDL in NIDDM. Diabetes 1995; 44: 60.

    Article  PubMed  CAS  Google Scholar 

  33. Maggi E, Perani G, Falaschi F, Frattoni A, Martignoni A, Finardi G, et al. Autoantiboies against oxidized LDL in patients with coronary artery disease. Presse Med 1994; 23:1158.

    PubMed  CAS  Google Scholar 

  34. Maggi E, Bellazi R, Gazo A, Seccia M, Bellomo G. Autoantibodies against oxidatively modified LDL in uremic patients undergoing dialysis. Kidney Int 1994; 46: 869.

    PubMed  CAS  Google Scholar 

  35. Salonen JT, Ylaherttuala S, Yamamoto R, Butler S, Korpela H, Salonen R, et al. Autoantibody against oxidized LDL and progression of carotid atherosclerosis. Lancet 1992; 339: 1183.

    Article  Google Scholar 

  36. Regnetstrom J, Nilsson J, Tornvall P, Landou C, Hamsten A. Susceptibility to LDL oxidation and coronary atherosclerosis in man. Lancet 1992; 339: 1183.

    Article  Google Scholar 

  37. Cominacini L, Garbin U, Pastorino AM, Dovoli A, Campagnola M, De Santis A, Pasini C, et al. Predisposition to LDL oxidation in patients with and without angiographically established coronary artery disease. Atherosclerosis 1993; 99: 63.

    Article  PubMed  CAS  Google Scholar 

  38. Chiu H, Jeng J, Shieh S. Increased oxidizability of plasma low density lipoprotein from patients with coronary artery disease. Biochim Biophys Acta 1994; 1225: 200.

    PubMed  CAS  Google Scholar 

  39. Lavy A, Brok GJ, Dankner G, Amotz A, Aviram M. Enhanced in vitro oxidation of plasma lipoproteins derived from hypercholesterolemic patients. Metabolism 1991; 40: 794.

    Article  PubMed  CAS  Google Scholar 

  40. Yokode M, Kita T, Arai H, Kawai C, Narumiya S Fujiwara M. Cholesterol ester accumulation in macrophages incubated with LDL pretreated with cigarette smoke extract. Proc Natl Acad Sci USA 1988; 85: 2344.

    Article  PubMed  CAS  Google Scholar 

  41. Harats D Ben Naim M, Debach Y, Hollander G, Stein O, Stein Y. Cigarette smoking renders LDL susceptible to peroxidative modification and enhanced metabolism by macrophages. Atherosclerosis 1989; 79: 245.

    Article  PubMed  CAS  Google Scholar 

  42. Scheffler E, Huber L, Fruhbis J, Schulz I, Ziegler R, Dresel HA. Alteration of plasma LDL from smokers. Atherosclerosis 1990; 82: 261.

    Article  PubMed  CAS  Google Scholar 

  43. Chobanian AV, Lichtenstein AH, Nilakhe V, Haudensheld CC, Drago R, Nicjkerson C. Influence of hypertension on aortic atherosclerosis in Watanabe rabbit. Hypertension 1989; 14: 203.

    PubMed  CAS  Google Scholar 

  44. Sharma RC, Crawford DW, Kramsch DM, Sevanian A, Jiao Q. Immunolocalisation of native antioxidant scavenger enzymes in early hypertensive and atherosclerotic arteries. Arterioscler Thromb 1992; 12:404.

    Google Scholar 

  45. Sane AS, Choksi SA, Mishra VV, Bard DP, Shah VC, Nagpal SP, Serum lipoperoxid levels in pregnancy induced hypertension. Panminerva Medica 1989; 31: 119.

    PubMed  CAS  Google Scholar 

  46. Prabha PS Dan UN, Kortkar R, Sangeetha P, Sagar P, Ramesh G. Free radical generation. lipid peroxidation and essential fatty acids in uncontrolled essential hypertension. Prostaglandins Leukot Essent Fatty Acids 1990; 41: 27.

    Article  PubMed  CAS  Google Scholar 

  47. Keidar S, Kaplan M, Shapira C, Brook JG, Aviram M. LDL isolated from patients with esential hypertension exhibits increased propensity for oxidation and enhanced uptake by macrophages. Atherosclerosis 1994; 107: 71.

    Article  PubMed  CAS  Google Scholar 

  48. Bierman EL. Atherogenesis in diabetes. Arterioscler Thromb 1992; 12: 647.

    PubMed  CAS  Google Scholar 

  49. Hunt JV, Smith CT, Wolff CP. Autoxidative glycosylation and possible involvement of peroxyl and free radicals in LDL modification by glucose. Diabetes 1980;29:251.

    Google Scholar 

  50. Kawamura KM, Heinecke JW, Chait A. Glucose dependent lipid peroxidation of LDL. Clin Res 1992; 40: 102A.

    Google Scholar 

  51. Sakurai T, Kimura S, Nakano M, Kimura H. Oxidative modification of glycated lipoprotein in presence of iron. Biochem Biophys Res Commun 1992; 177: 433.

    Article  Google Scholar 

  52. Bowie A, Owens D, Collins P, Johnson A, Tomkin GH. Glycosylated LDL is more sensitive to oxidation: implications for the diabetic patient?. Atherosclerosis 1993; 102: 63.

    Article  PubMed  CAS  Google Scholar 

  53. Rabini A, Fumelli R, Galassi R, Dousset N, et al. Increased susceptibility to lipid oxidation of LDL and erythrocyte membranes from diabetic patients. Metabolism 1994; 43: 1470.

    Article  PubMed  CAS  Google Scholar 

  54. Babiy A, Gebicki J, Sullivan D. Increased oxidizability of plasma lipoproteins in diabetic patients can be decreased by probucol therapy and is not due to glycation. Atherosclerosis 1990; 81: 175.

    Article  PubMed  CAS  Google Scholar 

  55. Reaven PD, Barnett J, Herold DA, Edelman S. Effect of vitamine on susceptibility of LDL and LDL subfractions to oxidation and on protein glycation in NIDDM. Diabetes Care 1995; 18:807.

    Article  PubMed  CAS  Google Scholar 

  56. Fuller CJ, Chandalia M, Garg A, Grundy SM, Jialal I. Alpha tocopherol supplementation at pharmacological doses decreases LDL oxidative susceptibility but not protein glycation in patients with diabetes mellitus. Am J Clin Nutr 1996; 63: 753.

    PubMed  CAS  Google Scholar 

  57. Sato Y, Hotta N, Sakamoto N, Matasuoka S, Ohishi N, Yagi K. Lipid peroxide level in plasma of diabetic patient. Biochem Med 1979; 21: 104.

    Article  PubMed  CAS  Google Scholar 

  58. Parthasarathy S, Barnett J, Fong LG. HDL inhibits the oxidative modification of LDL. Biochim Biophys Acta 1990; 1044: 275.

    PubMed  CAS  Google Scholar 

  59. Watson AD, Navab M, Hama SY, Sevanian A, Prescott SM, Stafforni DM, McIntyre TM, Du BN, Fogelman AM, Berliner JA. Effect of PAF-AH on the formation and action of minimally oxidized LDL. J Clin Invest 1995; 95: 774.

    PubMed  CAS  Google Scholar 

  60. Watson AD, Berliner JA, Hama SY, La Du BN, Faull KF, Fogelman AM, Navab M. Protective effect of HDL associated paroxonase inhibition of biologic activity of minimally oxidized LDL. J Clin Invest 1995; 95: 2882.

    Google Scholar 

  61. Mackness MI, Carrol S, Durrington PN. Paroxonase prevents accumulation of lipoperoxides in LDL. FEBS Lett 1991; 286: 152.

    Article  PubMed  CAS  Google Scholar 

  62. Maier A, Barenghi L, Pagani F, Bradamante S, Comi P, Ragnotti G. The protective role of high density lipoprotein on oxidized LDL-induced U937/endothelial cell interactions. Eur J Biochem 1993; 1575: 35.

    Google Scholar 

  63. Reaven P, Parthasarathy S, Beltz W, Witztum J. Effect of probucol dosage on plasma lipid and lipoprotein levels and on protection of LDL against in vitro oxidation in humans. Arterioscler Thromb 1992; 12: 318.

    PubMed  CAS  Google Scholar 

  64. Walldius G, Carlson LA, Erickson U, Olsson AG, Johansson J. et al. Development of femoral atherosclerosis in hypercholesterolemic patients during treatment with cholestyramine and probucol/placebo: PQRST. Am J Cardiol 1988; 62: 37.

    Article  Google Scholar 

  65. Hirose M, Shibata M, Hagiwara A, Imaida K, Ito N. Chronic toxicity of butylated hydroxytoluene in Wistar rats. Food Cosmet Toxicol 1981; 19: 147.

    Article  PubMed  CAS  Google Scholar 

  66. Physicians Desk Reference, 44th ed. Oradell: Medical Economics, 1990.

  67. Jialal I, Fuller CJ. Effect of vitamin E. vitamin C and beta carotene on LDL oxidation and atherosclerosis. Can J Cardiol 1995; 11: 97.

    Google Scholar 

  68. Esterbauer H, Dieber Rotheneder M, Waeg G, Puhl H, Tatzber F. Endogenous antioxidants and lipoprotein oxidation. Biochem Soc Trans 1990; 18: 1059.

    PubMed  CAS  Google Scholar 

  69. Gey KF, Puska P, Jordan P, Moser U. Inverse correlation between vitamin E and mortality from ischemic heart disease in crosscultural epidemiology. Am J Clin Nutr 1992; 53: 326.

    Google Scholar 

  70. Riemersma RA, Wood DA, McIntyre CCA, Elton RA, Gey KF, Oliver MF. Risk of angina pectoris and plasma concentrations of vitamins A, C. E and carotene. Lancet 1991; 337: 1.

    Article  PubMed  CAS  Google Scholar 

  71. The Alpha Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. New Engl J Med 1994; 330: 1029.

    Article  Google Scholar 

  72. Stephens NG, Parsons A, Schofeld PM, Kelly F, Cheeseman K, Mitchinson MJ, Brown MJ. Randomized controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996; 347: 7811.

    Article  Google Scholar 

  73. Westrope KL, Miller RA, Wilson RB. Vitamin E in a rabbit model of endogenous hypercholesterolemia and atherosclerosis. Nutr Rep Int 1982; 25:83.

    CAS  Google Scholar 

  74. Smith TL, Kummerow FA. Effect of dietary vitamin E on plasma lipids and atherogenesis in restricted ovulator hens. Atherosclerosis 1989; 75: 105.

    Article  PubMed  CAS  Google Scholar 

  75. Janero DR. Therapeutic potential of vitamin E in the pathogenesis of spontaneous atherosclerosis. Free Radic Biol Med 1991; 11: 129.

    Article  PubMed  CAS  Google Scholar 

  76. Esterbauer H, Dieber Rotheneder M, Streigl G, Waeg G. Role of vitamin E in preventing oxidation of LDL Am J Clin Nutr 1991; 53: 314.

    Google Scholar 

  77. Princen HMG, Van Poppel G, Vogelezang C, Buytenhek R, Kok FJ. Supplementation with vitamin E but not beta carotene in vivo protects LDL from lipid peroxidation in vitro: effects of cigarette smoking. Arterioscler Thromb 1992; 12: 554.

    PubMed  CAS  Google Scholar 

  78. Dieber Rotheneder M, Puhl H, Waeg G, Streigl G, Esterbauer H. Effect of oral supplementation with d-alpha tocopherol on the vitamin E content of human LDL and resistance to oxidation. J Lipid Res 1991; 32: 1325.

    PubMed  CAS  Google Scholar 

  79. Jialal I, Grundy SM. Effect of dietary supplementation with alpha tocopherol on the oxidative modification of LDL. L Lipid Res 1992 33: 899.

    CAS  Google Scholar 

  80. Jialal I, Scaccini C. Antioxidants and atherosclerosis. Curr Opin Lipidol 1992; 3: 324.

    Article  CAS  Google Scholar 

  81. Jialal I, Fuller CJ, Huet BA. The effect of alpha tocopherol supplementation on LDL oxidation: a dose response study Arterioscler Thromb 1995; 15: 192.

    Google Scholar 

  82. Belcher JD, Balla J, Jacons DR, Gross M, Jacob HS, Vercelloti GM, Vitamin E. LDL and endothelium-brief oral supplementation prevents Ox-LDL mediated vascular injury in vivo. Arterioscler Thromb 1993: 13: 1774.

    Google Scholar 

  83. Salonen JT, Salonen R, Seppanen K, Rinta Kikkas M, Korpela H, Alfthan G, et al. Effect of antioxidant supplementation on platelet function: a randomized, pair matched placebo controlled, double blind trial in men with low antioxidant status. Am J Clin Nutr 1991; 53: 1222.

    PubMed  CAS  Google Scholar 

  84. Ozer NK, Palozza P, Boscoboinik D, Azzi A.d-Alpha tocopherol inhibits LDL adhesion and protein kinase C activity in vascular smooth muscle cells. FEBS Lett 1993; 322: 307.

    Article  PubMed  CAS  Google Scholar 

  85. Keaney JF, Gaziano JM, Xu A, Frei B, Celentano CJ, Schwaery et al. Low dose alpha tocopherol improves and high dose worsens endothelial vasodilator function in cholesterol fed rabbits. Clin Invest 1994; 93: 844.

    Google Scholar 

  86. Faruqui R, De la Motte C, Dicorleto PE. Alpha tocopherol inhibits agonist-induced monocyte cell adherence to cultured human endothelial cells. J Clin Invest 1994; 94: 592.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devaraj, S., Jialal, I. Oxidized low-density lipoprotein and atherosclerosis. Int J Clin Lab Res 26, 178–184 (1996). https://doi.org/10.1007/BF02592979

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592979

Key words

Navigation