Skip to main content
Log in

Barycentric scenario trees in convex multistage stochastic programming

  • Published:
Mathematical Programming Submit manuscript

Abstract

This work deals with the approximation of convex stochastic multistage programs allowing prices and demand to be stochastic with compact support. Based on earlier results, sequences of barycentric scenario trees with associated probability trees are derived for minorizing and majorizing the given problem. Error bounds for the optimal policies of the approximate problem and duality analysis with respect to the stochastic data determine the scenarios which improve the approximation. Convergence of the approximate solutions is proven under the stated assumptions. Preliminary computational results are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Birge, “Decomposition and partitioning methods for multi-stage stochastic linear programs”,Operations Research 33 (1985) 989–1007.

    MATH  MathSciNet  Google Scholar 

  2. J. birge, “An L-shaped computer code for multi-stage stochastic linear programs,” in: Y. Ermoliev and R.J.-B. Wets, eds.,Numerical Techniques for Stochastic Optimization (Springer, Berlin, 1988) pp. 255–266.

    Google Scholar 

  3. J. Birge, “The relationship between the L-shaped method and dual basis factorization for stochastic linear programming”, in: Y. Ermoliev and R.J.-B. Wets, eds.,Numerical Techniques for Stochastic Optimization (Springer, Berlin, 1988) pp. 267–272.

    Google Scholar 

  4. J. Birge and R.J.-B. Wets, “Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse”,Mathematical Programming Study 27 (1986) 54–102.

    MATH  MathSciNet  Google Scholar 

  5. J. Birge and R.J.-B. Wets, “Computing bounds for stochastic programming problems by means of a generalized moment problem”,Mathematics of Operations Research 12 (1987) 149–162.

    MATH  MathSciNet  Google Scholar 

  6. J. Birge and R.J.-B. Wets, eds.,Stochastic Programming, Part I, II, Proceedings of the 5th International Conference on Stochastic Programming, Ann Arbor, MI, August 13–18 (1989);Annals of Operations Research 30, 31 (1991).

  7. G.B. Dantzig and P.W. Glynn “Parallel processors for planning under uncertainty”,Annals of Operations Research 22 (1990) 1–21.

    Article  MATH  MathSciNet  Google Scholar 

  8. G.B. Dantzig and G. Infanger, “Multistage stochastic linear programs for portfolio optimization,” Technical Report SOL 91-11, Stanford University (1991).

  9. M.A.H. Dempster, ed.,Stochastic Programming, Proceedings of the 1st International Conference on Stochastic Programming, Oxford (1974), (Academic Press, New York, 1980).

    MATH  Google Scholar 

  10. M.A.H. Dempster, “Introduction to stochastic programming,” in: M.A.H. Dempster, ed.,Stochastic Programming (Academic Press, New York, 1980) pp. 3–59.

    Google Scholar 

  11. M.A.H. Dempster, “The expected value of perfect information in the optimal evolution of stochastic systems,” in: M. Arato, D. Vermes and A.V. Balakrishnan, eds.,Stochastic Differential Systems, Lecture Notes in Control and Information Sciences (1981) pp. 25–40.

  12. M.A.H. Dempster, “On stochastic programming II: Dynamic problems under risk”,Stochastics 25 (1988) 15–42.

    MATH  MathSciNet  Google Scholar 

  13. N.C.P. Edirisinghe and W.T. Ziemba, “Bounds for two-stage stochastic programs with fixed recourse,Mathematics of Operations Research 19 (2) (1994) 292–313.

    MATH  MathSciNet  Google Scholar 

  14. N.C.P. Edirisinghe and W.T. Ziemba, “Bounding the expectation of a saddle function with application to stochastic programming”,Mathematics of Operations Research 19 (2) (1994) 314–340.

    MathSciNet  Google Scholar 

  15. Y. Ermoliev and R.J.-B. Wets,Numerical Techniques for Stochastic Optimization (Springer, Berlin, 1988).

    MATH  Google Scholar 

  16. K. Frauendorfer, “Solving SLP recourse problems with arbitrary multivariate distributions—The dependent case,”Mathematics of Operations Research 13 (3) (1988) 377–394.

    MATH  MathSciNet  Google Scholar 

  17. K. Frauendorfer,Stochastic Two-stage Programming, Lecture Notes in Economics and Mathematical Systems, Vol. 392 (Springer, Berlin, 1992).

    MATH  Google Scholar 

  18. K. Frauendorfer, “Multistage stochastic programming: Error analysis for the convex case”,Mathematical Methods of Operations Research 39 (1) (1994) 93–122.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Frauendorfer, “Stochastic dynamic optimization: Modelling and methodological aspects,” Working Paper, University of St. Gallen (1994).

  20. K. Frauendorfer and P. Kall, “A solution method for SLP recourse problems with arbitrary distributions—The independent case”,Problems of Control and Information Theory 17 (1988) 177–205.

    MATH  MathSciNet  Google Scholar 

  21. H.I. Gassmann, “MSLiP: A computer code for the multistage stochastic linear programming problem,”Mathematical Programming 47 (1990) 407–423.

    Article  MATH  MathSciNet  Google Scholar 

  22. O. Hemandez-Lerma and W.J. Runggaldier, “Monotone approximations for convex stochastic control problems,Journal of Estimation, Control and Systems, to appear.

  23. C. Huang, W.T. Ziemba and A. Ben-Tal, “Bounds on the expectation of a convex function of a random variable: With application to stochastic programming”,Operations Research 25 (1977) 315–325.

    MATH  MathSciNet  Google Scholar 

  24. G. Infanger,Planning under Uncertainty—Solving Large-scale Stochastic Linear Programs (Boyd & Fraser, New York, 1994).

    MATH  Google Scholar 

  25. P. Kall, “Stochastic programming with recourse: Upper bound and moment problems—A review,” in: J. Guddat, B. Bank, H. Hollatz, P. Kall, D. Klatte, B. Kummer, K. Lommatsch, K. Tammer, M. Vlach and K. Zimmermann, eds.,Advances in Mathematical Optimization (Akademie Verlag, Berlin, 1988) pp. 86–103.

    Google Scholar 

  26. P. Kall, A. Ruszczynski and K. Frauendorfer, “Approximation techniques in stochastic programming”, in: Y. Ermoliev and R.J.-B. Wets, eds.,Numerical Techniques for Stochastic Optimization (Springer, Berlin, 1988) pp. 33–64.

    Google Scholar 

  27. P. Kall and S.W. Wallace,Stochastic Programming (Wiley, Chichester, 1994).

    MATH  Google Scholar 

  28. M. Loève,Probability Theory (1963).

  29. F.V. Louveaux, “A solution method for multistage stochastic programs, with recourse with application to an energy investment problem”,Operations Research 28 (4) (1980) 889–902.

    MATH  MathSciNet  Google Scholar 

  30. F.V. Louveaux, “Multistage stochastic programs with block-separable recourse”,Mathematical Programming Study 28 (1986) 48–62.

    MATH  MathSciNet  Google Scholar 

  31. J.M. Mulvey and H. Vladimirou, “Solving multistage stochastic networks: An application of scenario aggregation”,Networks 21 (6) (1991) 619–643.

    MATH  MathSciNet  Google Scholar 

  32. J.M. Mulvey and H. Vladimirou, “Applying the progressive hedging algorithm to stochastic generalized networks”, in: J. Birge and R.J.-B. Wets, eds.,Stochastic Programming, Part II; Annals of Operations Research 31 (1991) 399–424.

  33. J.M. Mulvey and H. Vladimirou, “Stochastic network programming for financial planning problems,” Department of Civil Engineering and Operations Research, Princeton University (1992);Management Science 38 (1992) 1642–1664.

  34. M.C. Noel and Y. Smeers, “Nested Decomposition of multistage nonlinear programs with recourse”,Mathematical Programming 37 (1987) 131–152.

    MATH  MathSciNet  Google Scholar 

  35. P. Olsen, “When is a multistage stochastic programming well-defined?”,SIAM Journal on Control and Optimization 14 (3) (1976) 518–527.

    Article  MATH  MathSciNet  Google Scholar 

  36. S.M. Robinson, “Extended scenario analysis”, in: J. Birge and R.J.-B. Wets, eds.,Stochastic Programming, Part II; Annals of Operations Research 31 (1991) 385–398.

  37. R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  38. R.T. Rockafellar, “Integral functionals, normal integrand and measurable selections”, in:Nonlinear Operators and the Calculus of Variations, Lecture Notes in Mathematics, Vol. 543, (Springer, Berlin, 1976) pp. 157–207.

    Chapter  Google Scholar 

  39. R.T. Rockafellar and R.J.-B. Wets, “Nonanticipativity andL 1-martingales in stochastic optimization problems”,Mathematical Programming Study 6 (1976) 170–187.

    MathSciNet  Google Scholar 

  40. R.T. Rockafellar and R.J.-B. Wets, “The optimal recourse problem in discrete time:L 1-multipliers for inequality constraints”,SIAM Journal on Control and Optimization 16 (1) (1978) 16–36.

    Article  MATH  MathSciNet  Google Scholar 

  41. R.T. Rockafellar and R.J.-B. Wets, “Scenarios and policy aggregation in optimization under uncertainty”,Mathematics of Operations Research 16 (1991) 119–147.

    Article  MATH  MathSciNet  Google Scholar 

  42. A. Rusczyński, “Parallel decomposition of multistage stochastic programming problems”,Mathematical Programming 58 (2) (1993) 201–228.

    Article  MathSciNet  Google Scholar 

  43. H. Vladimirou, “Stochastic networks: Solution methods and applications in financial planning”, HD Thesis, Department of Civil Engineering and Operations Research, Princeton University (1990).

  44. R.J.-B. Wets, “Stochastic programming: Solution techniques and approximation schemes”, in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming, The State of the Art (Springer, Berlin, 1983), pp. 566–603.

    Google Scholar 

  45. R.J.-B. Wets, “Large-scale linear programming techniques in stochastic programming”, in: Y. Ermoliev and R.J.-B. Wets, eds.,Numerical Techniques for Stochastic Optimization, (Springer, Berlin, 1988) pp. 65–94.

    Google Scholar 

  46. R.J.-B. Wets, “The aggregation principle in scenario analysis and stochastic optimization”, in: S. Wallace, ed.,Algorithms and Model Formulations in Mathematical Programming (Springer, Berlin);NATO ASI 51 (1989) 91–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by Schweizerischen Nationalfonds Grant Nr. 21-39 575.93.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frauendorfer, K. Barycentric scenario trees in convex multistage stochastic programming. Mathematical Programming 75, 277–293 (1996). https://doi.org/10.1007/BF02592156

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592156

Keywords

Navigation