Skip to main content
Log in

Shortest paths algorithms: Theory and experimental evaluation

  • Published:
Mathematical Programming Submit manuscript

Abstract

We conduct an extensive computational study of shortest paths algorithms, including some very recent algorithms. We also suggest new algorithms motivated by the experimental results and prove interesting theoretical results suggested by the experimental data. Our computational study is based on several natural problem classes which identify strengths and weaknesses of various algorithms. These problem classes and algorithm implementations form an environment for testing the performance of shortest paths algorithms. The interaction between the experimental evaluation of algorithm behavior and the theoretical analysis of algorithm performance plays an important role in our research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.K. Ahuja, K. Mehlhorn, J.B. Orlin and R.E. Tarjan, “Faster algorithms for the shortest path problem”,J. Assoc. Comput. Mach. 37 (2) (1990) 213–223.

    MATH  MathSciNet  Google Scholar 

  2. R.E. Bellman, “On a routing problem”,Quart. Appl. Math. 16 (1958) 87–90.

    MathSciNet  MATH  Google Scholar 

  3. P. van Emde Boas, R. Kaas and E. Zijlstra, “Design and implementation of an efficient priority queue”,Math. Syst. Theory 10 (1977) 99–127.

    Article  MATH  Google Scholar 

  4. T.H. Cormen, C.E. Leiserson and R.L. Rivest,Introduction to Algorithms (MIT Press, Cambridge, MA, 1990).

    MATH  Google Scholar 

  5. E.V. Denardo and B.L. Fox, “Shortest-route methods: 1. Reaching, pruning, and buckets”,Operations Research 27 (1979) 161–186.

    MATH  MathSciNet  Google Scholar 

  6. R.B. Dial, “Algorithm 360: Shortest path forest with topological ordering”,Comm. ACM 12 (1969) 632–633.

    Article  Google Scholar 

  7. R.B. Dial, F. Glover, D. Karney and D. Klingman, “A computational analysis of alternative algorithms and labeling techniques for finding shortest path trees”,Networks 9 (1979) 215–248.

    MATH  MathSciNet  Google Scholar 

  8. E.W. Dijkstra, “A note on two problems in connection with graphs”,Numer. Math. 1 (1959) 269–271.

    Article  MATH  MathSciNet  Google Scholar 

  9. R.E. Erickson, C.L. Monma and A.F. Veinott Jr., “Send-and-split method for minimum-concave-cost network flows”,Math. of Oper. Res. 12 (1979) 634–664.

    MathSciNet  Google Scholar 

  10. L.R. Ford Jr., and D.R. Fulkerson,Flows in Networks (Princeton Univ. Press, Princeton, NJ, 1962)

    MATH  Google Scholar 

  11. M.L. Fredman and R.E. Tarjan, “Fibonacci heaps and their uses in improved network optimization algorithms”,J. Assoc. Comput. Mach. 34 (1987) 596–615.

    MathSciNet  Google Scholar 

  12. M.L. Fredman and D.E. Willard, “Trans-dichotomous algorithms for minimum spanning trees and shortest paths”,J. Comp. and Syst. Sci. 48 (1994) 533–551.

    Article  MATH  MathSciNet  Google Scholar 

  13. H.N. Gabow and R.E. Tarjan, “Faster scaling algorithms for network problems”,SIAM J. Comput. (1989) 1013–1036.

  14. G. Gallo and S. Pallottino, “Shortest paths algorithms”,Annals of Oper. Res. 13 (1988) 3–79.

    MathSciNet  Google Scholar 

  15. F. Glover, R. Glover and D. Klingman, “Computational study of an improved shortest path algorithm”,Networks 14 (1984) 25–37.

    Google Scholar 

  16. F. Glover, D. Klingman and N. Phillips, “A new polynomially bounded shortest paths algorithm”,Oper. Res. 33 (1985) 65–73.

    Article  MATH  MathSciNet  Google Scholar 

  17. A.V. Goldberg, “Scaling algorithms for the shortest paths problem”, in:Proceedings 4th ACM-SIAM Symposium on Discrete Algorithms (1993) 222–231.

  18. A.V. Goldberg and T. Radzik, “A heuristic improvement of the Bellman-Ford algorithm”,Applied Math. Let. 6 (1993) 3–6.

    Article  MATH  MathSciNet  Google Scholar 

  19. M.S. Hung and J.J. Divoky, “A computational study of efficient shortest path algorithms”,Comput. Oper. Res. 15 (1988) 567–576.

    Article  MATH  MathSciNet  Google Scholar 

  20. D.S. Johnson and C.C. McGeoch, eds.,Network Flows and Matching: First DIMACS Implementation Challenge (AMS, 1993).

  21. A. Kershenbaum, “A note on finding shortest paths trees”,Networks 11 (1981) 399.

    MathSciNet  Google Scholar 

  22. E.L. Lawler,Combinatorial Optimization: Networks and Matroids (Holt Reinhart, and Winston, New York 1976).

    MATH  Google Scholar 

  23. B.Ju. Levit and B.N. Livshits,Neleneinye Setevye Transportnye Zadachi (Transport, Moscow, 1972), in Russian.

  24. J-F. Mondou, T.G. Crainic and S. Nguyen, “Shortest path algorithms: A computational study with the C programming language”,Comput. Oper. Res. 18 (1991) 767–786.

    Article  MATH  Google Scholar 

  25. E.F. Moore, “The shortest path through a maze”, in:Proceedings of the Int. Symp. on the Theory of Switching (Harvard University Press, 1959) 285–292.

  26. S. Pallottino, “Shortest-path methods: Complexity, interrelations and new propositions”,Networks 14 (1984) 257–267.

    MATH  Google Scholar 

  27. U. Pape, “Implementation and efficiency of Moore algorithms for the shortest root problem”,Math. Prog. 7 (1974) 212–222.

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Shier and C. Witzgall, “Properties of labeling methods for determining shortest paths trees”,J. Res. Natl. Bur. Stand. 86 (1981) 317–330.

    MATH  MathSciNet  Google Scholar 

  29. R.E. Tarjan,Data Structures and Network Algorithms (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was done while Boris V. Cherkassky was visiting Stanford University Computer Science Department and supported by the NSF and Powell Foundation grants mentioned below.

Andrew V. Goldberg was supported in part by ONR Young Investigator Award N00014-91-J-1855, NSF Presidential Young Investigator Grant CCR-8858097 with matching funds from AT&T, DEC, and 3M, and a grant from Powell Foundation. Corresponding author.

This work was done while Tomasz Radzik was a Postdoctoral Fellow at SORIE, Cornell University, and supported by the National Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research, through NSF grant DMS-8920550, and by the Packard Fellowship of Éva Tardos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherkassky, B.V., Goldberg, A.V. & Radzik, T. Shortest paths algorithms: Theory and experimental evaluation. Mathematical Programming 73, 129–174 (1996). https://doi.org/10.1007/BF02592101

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592101

Keywords

Navigation