Advertisement

Ukrainian Mathematical Journal

, Volume 51, Issue 7, pp 1055–1068 | Cite as

Approximation of fractional-order integrals by algebraic polynomials. II

  • V. P. Motornyi
Article

Abstract

We investigate the approximation of functions that are fractional-order integrals of bounded functions by algebraic polynomials.

Keywords

Trigonometric Polynomial Interpolation Polynomial Pointwise Approximation Algebraic Polynomial Lebesgue Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Nikol'skii, “On the best polynomial approximation of functions satisfying the Lipschitz condition,”Izv. Akad. Nauk SSSR, Ser. Mat.,10, 295–322 (1946).Google Scholar
  2. 2.
    A. F. Timan,Theory of Approximation of Functions of a Real Variable [in Russian], Fizmatgiz, Moscow (1960).Google Scholar
  3. 3.
    N. P. Korneichuk and A. I. Polovina, “On approximation of continuous and differentiable functions by algebraic polynomials on a segment,”Dokl. Akad. Nauk SSSR,166, No. 2, 281–283 (1966).MathSciNetGoogle Scholar
  4. 4.
    N. P. Korneichuk and A. I. Polovina, “On approximation of functions satisfying the Lipschitz condition by algebraic polynomials,”Mat. Zametki,9, No. 4, 441–447 (1971).MathSciNetGoogle Scholar
  5. 5.
    N. P. Korneichuk and A. I. Polovina, “On approximation of continuous functions by algebraic polynomials,”Ukr. Mat. Zh.,24, No. 3, 328–340 (1972).Google Scholar
  6. 6.
    A. A. Ligun, “On the best approximation of differentiable functions by algebraic polynomials,”Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 4, 53–60 (1980).MathSciNetGoogle Scholar
  7. 7.
    V. N. Temlyakov, “Approximation of functions from the classW 1 by algebraic polynomials”Mat. Zametki,29, No. 4, 597–602 (1981).MathSciNetGoogle Scholar
  8. 8.
    R. M. Trigub, “Direct theorems on approximation of smooth functions by algebraic polynomials on a segment,”Mat. Zametki,54, No. 6, 113–121 (1993).MathSciNetGoogle Scholar
  9. 9.
    V. K. Dzyadyk, “On the best approximation on the class of periodic function with boundeds-derivative (0<s<1),”Izv. Akad. Nauk SSSR, Ser. Mat.,17, 135–162 (1953).MathSciNetGoogle Scholar
  10. 10.
    V. K. Dzyadyk, “On the best approximation on the classes of periodic functions defined by kernels that are integrals of absolutely monotonic functions,”Izv. Akad. Nauk SSSR, Ser. Mat.,23, 933–950 (1959).zbMATHMathSciNetGoogle Scholar
  11. 11.
    V. K. Dzyadyk, “On the best approximation on the classes of periodic functions defined by integrals of a linear combination of absolutely monotonic kernels,”Mat. Zametki,16, No. 5, 691–701 (1974).zbMATHMathSciNetGoogle Scholar
  12. 12.
    L. Ya. Shalashova, “Timan approximation theorem for functions with continuous fractional-order derivative,”Dokl. Akad. Nauk SSSR,188, No. 6, 1248–1249 (1969).MathSciNetGoogle Scholar
  13. 13.
    V. P. Motornyi, “Approximation of fractional-order integrals by algebraic polynomials I,”Ukr. Mat. Zh.,51, No. 5, 603–613 (1999).MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Kh. Turetskii,Interpolation Theory in Problems [in Russian], Vysheishaya Shkola, Minsk (1977).Google Scholar
  15. 15.
    V. P. Motornyi, “Approximation of periodic functions by interpolation polynomials inL 1,”Ukr. Mat. Zh.,42, No. 6, 781–786 (1990).MathSciNetGoogle Scholar
  16. 16.
    I. P. Natanson,Constructive Theory of Functions [in Russian], Gostekhizdat, Moscow (1949).Google Scholar
  17. 17.
    V. P. Motornyi, “Approximation of functions by algebraic polynomials in the metric ofL p,”Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 4, 874–899 (1971).MathSciNetGoogle Scholar
  18. 18.
    Yu. A. Brudnyi, “Generalization of one Timan theorem,”Dokl. Akad. Nauk SSSR,148, No. 6, 1237–1240 (1963).MathSciNetGoogle Scholar
  19. 19.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev,Integrals and Derivatives of Fractional Order and Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987).zbMATHGoogle Scholar
  20. 20.
    N. S. Bernshtein,Collection of Works [in Russian], Academy of Sciences of the USSR, Moscow (1952).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • V. P. Motornyi

There are no affiliations available

Personalised recommendations