Advertisement

Ukrainian Mathematical Journal

, Volume 51, Issue 6, pp 926–933 | Cite as

On periodic solutions of the equation of a nonlinear oscillator with pulse influence

  • A. M. Samoilenko
  • V. G. Samoilenko
  • V. V. Sobchuk
Article

Abstract

We study periodic solutions and the behavior of phase trajectories of the differential equation of a nonlinear oscillator with pulse influence at unfixed moments of time.

Keywords

Periodic Solution Singular Point Periodic Mode Integer Number Nonlinear Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Samoilenko and N. A. Perestyuk,Impulsive Differential Equations [in Russian], Vyshcha Shkola, Kiev (1987).Google Scholar
  2. 2.
    D. W. Jordan and P. Smith,Nonlinear Ordinary Differential Equations, Oxford University Press, London (1987).zbMATHGoogle Scholar
  3. 3.
    R. Reissig, G. Sansone, and R. Conti,Qualitative Theorie Nichtlinearer Differentialgleichungen, Edizioni Cremonese, Roma (1963).Google Scholar
  4. 4.
    B. P. Demidovich,Lectures on the Mathematical Theory of Stability [in Russian], Nauka, Moscow (1967).Google Scholar
  5. 5.
    N. A. Perestyuk, V. G. Samoilenko, and K. K. Elgondiev, “Poincaré map and periodic solutions of systems of differential equations with pulse influence,”Nelin. Kolyv., No 1, 44–50 (1998).MathSciNetGoogle Scholar
  6. 6.
    H. Poincaré,On Curves Defined by Differential Equations [Russian translation], Gostekhizdat, Moscow-Leningrad (1947).Google Scholar
  7. 7.
    A. N. Sharkovskii, S. F. Kolyada, A. G. Sivak, and V. V. Fedorenko,Dynamics of One-Dimensional Maps [in Russian], Naukova Dumka, Kiev (1989).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • A. M. Samoilenko
    • 1
  • V. G. Samoilenko
    • 2
  • V. V. Sobchuk
    • 2
  1. 1.Academician. Institute of MathematicsUkrainian Academy of SciencesKiev
  2. 2.Kiev UniversityKiev

Personalised recommendations