Skip to main content
Log in

A conforming decomposition theorem, a piecewise linear theorem of the alternative, and scalings of matrices satisfying lower and upper bounds

  • Published:
Mathematical Programming Submit manuscript

Abstract

A scaling of a nonnegative matrixA is a matrixXAY −1, whereX andY are nonsingular, nonnegative diagonal matrices. Some condition may be imposed on the scaling, for example, whenA is square,X=Y or detX=detY. We characterize matrices for which there exists a scaling that satisfies predetermined upper and lower bound. Our principal tools are a piecewise linear theorem of the alternative and a theorem decomposing a solution of a system of equations as a sum of minimal support solutions which conform with the given solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bacharach,Biproportional matrices and input-output change (Cambridge University Press, Cambridge, 1970).

    MATH  Google Scholar 

  2. A. Bachem and M. Grötschel, “New Aspects of polyhedral theory”, in: B. Korte, ed.,Modern applied mathematics (Optimization and operations research) (North-Holland, Amsterdam, 1982) pp. 51–106.

    Google Scholar 

  3. R.E. Bank, “An automatic scaling procedure for a D'Yakanov-Gunn interation scheme”,Linear Algebra and its Applications 28 (1979) 17–33.

    Article  MATH  MathSciNet  Google Scholar 

  4. F.L. Bauer, “Optimally scaled matrices”,Numerische Mathematik 5 (1963) 73–87.

    Article  MATH  MathSciNet  Google Scholar 

  5. F.L. Bauer, “Remarks on optimally scaled matrices”,Numerische Mathematik 13 (1969), 1–3.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Berge,Graphs and hypergraphs (North-Holland, Amsterdam, 1973).

    MATH  Google Scholar 

  7. R.G. Bland, “Complementary orthogonal subspaces of ℝn and orientability of matroids”, Ph.D. thesis, available as Technical Report No. 219, (Cornell University, Ithaca, New York, 1974).

    Google Scholar 

  8. R.G. Bland and M. Las Vergnas, “Minty coloring and orientations of matroids”, in: A. Gewirtz and L.v. Quintas, eds.,Proceedings of the second international conference on combinatories mathematics (Annals of the New York Academy of Sciences 319, 1979).

  9. A.R. Curtis and J.K. Reid, “On the automatic scaling of matrices for Gaussian elimination”,Journal of the Institute of Mathematics and its Applications 10 (1972) 118–124.

    Article  MATH  Google Scholar 

  10. G.M. Engel and H. Schneider, “Cyclic and diagonal products on a matrix”,Linear Algebra and its Applications 7 (1973) 301–335.

    Article  MATH  MathSciNet  Google Scholar 

  11. G.M. Engel and H. Schneider, “Algorithms for testing the diagonal similarity of matrices and related problems”,SIAM Journal of Algebraic and Discrete Mathematics 3 (1982), 429–438.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Fiedler and V. Ptak, “Cyclic products and an inequality for determinants”,Czechoslovak Mathematical Journal 19 (1969) 428–450.

    MathSciNet  Google Scholar 

  13. D.R. Fulkerson and P. Wolfe, “An algorithm for scaling matrices”,SIAM Review 4 (1962) 142–146.

    Article  MathSciNet  Google Scholar 

  14. D. Gale,The theory of linear economic models (McGraw-Hill, New York, 1966).

    Google Scholar 

  15. A.J. Goldman, “Resolution and separation theorems for polyhedral convex sets”, in: H.W. Kuhn and A.W. Tucker, eds.,Linear inequalities and related systems (Princeton University Press 83, 1956).

  16. M.v. Golitschek, “An algorithm for scaling matrices and computing the minimum cycle mean in a digraph”,Numerische Mathematik 35 (1980) 45–55.

    Article  MATH  MathSciNet  Google Scholar 

  17. M.v Golitschek, “Optimal cycles in doubly weighted graphs and approximation of bivariate functions by univariate ones”,Numerische Mathematik 39 (1982) 65–84.

    Article  MATH  MathSciNet  Google Scholar 

  18. R.W. Hamming,Introduction to applied numerical analysis (McGraw-Hill, New York, 1971).

    MATH  Google Scholar 

  19. T.S. Motzkin, “Beiträge zur Theorie der linearen Ungleichungen”, Univ. Basel Dissertation (Jerusalem, Israel, 1936).

  20. W. Orchard-Hays,Advanced linear programming computing techniques (McGraw-Hill, New York, 1968).

    Google Scholar 

  21. R.T. Rockafellar, “The elementary vectors of a subspace of ℝn”, in: R.C. Bose and T.A. Dowling, eds.,Combinatorial mathematics and its applications, Proc. of the Chapel Hill Conference (University of North Carolina Press, 1968) pp. 104–127.

  22. U.G. Rothblum and H. Schneider, “Flows on graphs applied to diagonal similarity and diagonal equivalence for matrices”,Discrete Mathematics 24 (1978) 202–220.

    Google Scholar 

  23. B.D. Saunders and H. Schneider, “Cones, graphs and optimal scalings of matrices”Linear and Multilinear Algebra 8 (1979) 121–135.

    MATH  MathSciNet  Google Scholar 

  24. J.A. Tomlin, “On scaling linear programming problems”,Mathematical Programming Study 4 (1975) 146–166.

    MathSciNet  Google Scholar 

  25. W.T. Tutte, “A class of Abelian groups”,Canadian Journal of Mathematics 8 (1956) 13–28.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was partially supported by National Science Foundation Grants ENG-78-25182 and MCS-80-26132.

Rights and permissions

Reprints and permissions

About this article

Cite this article

v. Golitschek, M., Rothblum, U.G. & Schneider, H. A conforming decomposition theorem, a piecewise linear theorem of the alternative, and scalings of matrices satisfying lower and upper bounds. Mathematical Programming 27, 291–306 (1983). https://doi.org/10.1007/BF02591905

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02591905

Key words

Navigation