Skip to main content
Log in

Proving total dual integrality with cross-free families—A general framework

  • Published:
Mathematical Programming Submit manuscript

Abstract

We present a theorem stating that certain classes of linear programming problems have integer optimal (primal and dual) solutions. The theorem includes as special cases earlier results of Johnson, Edmonds and Giles, Frank, Hoffman and Schwartz, Gröflin and Hoffman, and Lawler and Martel. The proof method consists of deriving total dual integrality for the corresponding system of linear inequalities from the total unimodularity of certain ‘cross-free’ subsystems. The scheme presented here differs from the one proposed earlier by Grishuhin in that Grishuhin requires the total unimodularity of cross-free subsystems in the axioms, whereas here this follows from easier verifiable axioms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Cunningham and A.B. Marsh III, “A primal algorithm for optimum matching”,Mathematical Programming Study 8 (1978) 50–72.

    MathSciNet  Google Scholar 

  2. J. Edmonds, “Submodular functions, matroids and certain polyhedra”, in: R. Guy, et al. eds.Combinatorial structures and their applications (Gordon and Breach, New York, 1970), pp. 69–87.

    Google Scholar 

  3. J. Edmonds and R. Giles, “A min-max relation for submodular functions on graphs”,Annals of Discrete Mathematics 1 (1977) 185–204.

    Article  MathSciNet  Google Scholar 

  4. L.R. Ford and D.R. Fulkerson, “Maximum flow through a network”,Canadian Journal of Mathematics 8 (1956) 399–404.

    MATH  MathSciNet  Google Scholar 

  5. A. Frank, “Kernel systems of directed graphs”,Acta Scientiarum Mathematicarum 41 (1979) 63–76.

    MATH  Google Scholar 

  6. A. Frank, “Generalized polymatroids”,Proceedings Sixth Hungarian Combinatorial Colloquium (Eger, 1981), to appear.

  7. A. Frank, “An algorithm for submodular functions on graphs”,Annals of Discrete Mathematics 16 (1982) 97–120.

    MATH  Google Scholar 

  8. A. Frank, “Finding feasible vectors of Edmonds-Giles polyhedra”,Journal of Combinatorial Theory (B), to appear.

  9. S. Fujishige, “Structures of polytopes determined by submodular functions on crossing families”, Report No. 121 (81-22), Institute of Socio-Economic Planning, University of Tsukuba, 1981.

  10. S. Fujishige, “Algorithms for solving the independent flow problems”,Journal of the Operations Research Society of Japan 21 (1978) 189–203.

    MATH  MathSciNet  Google Scholar 

  11. D.R. Fulkerson, “Packing rooted directed cuts in a weighted directed graph”,Mathematical Programming 6 (1974) 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Giles, “Optimum matching forests 1: Special weights”,Mathematical Programming 22 (1982) 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Giles, “Optimum matching forests II: General weights”,Mathematical Programming 22 (1982) 12–38.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Giles, “Optimum matching forests III: Facets of matching forest polyhedra”,Mathematical Programming 22 (1982) 39–51.

    Article  MATH  MathSciNet  Google Scholar 

  15. V.P. Grishuhin, “Polyhedra related to a lattice”,Mathematical Programming 21 (1981) 70–89.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Gröflin and A.J. Hoffman, “Lattice polyhedra II: Constructions and examples”, preprint.

  17. M. Grötschel, L. Lovász and A. Schrijver, “The ellipsoid method and its consequences in combinatorial optimization”,Combinatorica 1 (1981) 169–197.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Hassin, “On network flows”, Ph.D. Dissertation. Yale University (New Haven, CT, 1978) (cf.Networks 12 (1982) 1–21).

    Google Scholar 

  19. A.J. Hoffman, “A generalization of max-flow min-cut”,Mathematical Programming 6 (1974) 352–359.

    Article  MATH  MathSciNet  Google Scholar 

  20. A.J. Hoffman and D. Schwartz, “On lattice polyhedra”, in: A. Hajnal and Vera T. Sós, eds.,Combinatorics (North-Holland, Amsterdam, 1978), pp. 593–598.

    Google Scholar 

  21. E.L. Johnson, “On cut-set integer polyhedra”,Cahiers du Centre d'Études de Recherche Opérationnelle 17 (1975) 235–251.

    MATH  Google Scholar 

  22. E.L. Lawler and C.U. Martel, “Computing maximal ‘polymatroidal’ network flows”,Mathematics of Operations Research 7 (1982) 334–347.

    Article  MATH  MathSciNet  Google Scholar 

  23. C.L. Lucchesi and D.H. Younger, “A minimax relation for directed graphs”,Journal of the London Mathematical Society (2) 17 (1978) 369–374.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Schrijver, “Min-max relations for directed graphs”,Annals of Discrete Mathematics 16 (1982) 127–146.

    MathSciNet  Google Scholar 

  25. A. Schrijver, “Short proofs on the matching polyhedron”,Journal of Combinatorial Theory (B) 34 (1983) 104–108.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Schrijver, “Total dual integrality from directed graphs, crossing families, and sub- and supermodular functions”, in: J.A. Bondy, U.S.R. Murty and W.R. Pulleyblank, eds.,Proceedings of the Silver Jubilee Conference on Combinatorics Waterloo 1982, to appear.

  27. A. Schrijver and P.D. Seymour, “A proof of total dual integrality of matching polyhedra”, Report ZN 79, Mathematical Centre, Amsterdam, 1977.

    Google Scholar 

  28. W.T. Tutte, “Lectures on matroids”,Journal of Research National Bureau of Standards 69B (1965) 1–47.

    MathSciNet  Google Scholar 

  29. U. Zimmermann, “Minimization of some nonlinear functions over polymatroidal network flows”,Annals of Discrete Mathematics 16 (1982) 287–309.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrijver, A. Proving total dual integrality with cross-free families—A general framework. Mathematical Programming 29, 15–27 (1984). https://doi.org/10.1007/BF02591726

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02591726

Key words

Navigation