Advertisement

Ukrainian Mathematical Journal

, Volume 51, Issue 5, pp 735–747 | Cite as

The theory of the numerical-analytic method: Achievements and new trends of development. V

  • M. I. Rontó
  • A. M. Samoilenko
  • S. I. Trofimchuk
Article

Abstract

We analyze the application of the numerical-analytic method proposed by A. M. Samoilenko in 1965 to difference equations.

Keywords

Periodic Solution Difference Equation Spectral Radius Ukrainian Academy Simple Iteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. I,”Ukr. Mat. Zh.,50, No. 1, 102–117 (1998).Google Scholar
  2. 2.
    M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. II,”Ukr. Mat. Zh.,50, No. 2, 225–243 (1998).Google Scholar
  3. 3.
    M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. III,”Ukr. Mat. Zh.,50, No. 7, 960–979 (1998).Google Scholar
  4. 4.
    M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. IV,”Ukr. Mat. Zh.,50, No. 12, 1656–1672 (1998).zbMATHGoogle Scholar
  5. 5.
    D. I. Martynyuk,Lectures in the Qualitative Theory of Difference Equations [in Russian], Naukova Dumka, Kiev (1972).Google Scholar
  6. 6.
    D. I. Martynyuk, N. V. Mironov, and L. V. Kharabovskaya, “Numerical-analytic method for the investigation of periodic solutions of nonlinear difference equations,” in:Differential-Difference Equations [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1981), pp. 58–66.Google Scholar
  7. 7.
    Yu. A. Mitropol'skii A. M. Samoilenko, and D. I. Martynyuk,Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  8. 8.
    Yu. A. Mitropol'skii, A. M. Samoilenko, and D. I. Martynyuk,Systems of Evolutionary Equations with Periodic and Quasiperiodic Coefficients, Kluwer, Dordrecht (1993).Google Scholar
  9. 9.
    R. Musielak and J. Popenda, “On periodic solutions of a first-order difference equation,”An. Sti. Univ. Iasi. Sec. I.A. Mat.,2, 124–132 (1988).Google Scholar
  10. 10.
    M. Kwapisz, “Some existence and uniqueness results for boundary-value problems for difference equations,”Appl. Anal.,37, 169–182 (1990).zbMATHMathSciNetGoogle Scholar
  11. 11.
    M. Kwapisz, “On boundary-value problems for difference equations,”J Math. Anal. Appl.,157, 254–270 (1991).CrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Kwapisz, “On modification of Samoilenko's numerical-analytic method of solving boundary-value problems for difference equations,”Appl. Math.,38, No. 2, 133–144 (1993).zbMATHMathSciNetGoogle Scholar
  13. 13.
    A. M. Samoilenko and M. I. Rontó,Numerical-Analytic Methods in the Theory of Boundary-Value Problems for Ordinary Differential Equations [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  14. 14.
    M. I. Rontó, A. N. Rontó, and S. I. Trofimchuk,Numerical-Analytic Method for Differential and Difference Equations in Partially Ordered Banach Spaces and Some Applications, Preprint No. 96-02, Institute of Mathematics, University of Miskolc, Miskolc (1996).Google Scholar
  15. 15.
    A. M. Samoilenko, “Numerical-analytic method for the investigation of periodic systems of ordinary differential equations. I,”Ukr. Mat. Zh.,17, No. 4, 82–93 (1965).CrossRefGoogle Scholar
  16. 16.
    A. M. Samoilenko, “Numerical-analytic method for the investigation of periodic systems of ordinary differential equations. II,”Ukr. Mat. Zh.,18, No. 2, 50–59 (1966).Google Scholar
  17. 17.
    A. M. Samoilenko and M. I. Rontó,Numerical-Analytic Methods of Investigating Periodic Solutions, Mir, Moscow (1976).Google Scholar
  18. 18.
    A. M. Samoilenko and M. I. Rontó,Numerical-Analytic Methods for the Investigation of Solutions of Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  19. 19.
    M. A. Krasnosel'skii,Positive Solutions of Operator Equations, Noordhoff, Groningen (1964).Google Scholar
  20. 20.
    L. V. Kantorovich and G. P. Akilov,Functional Analysis [in Russian], Nauka Moscow (1977).Google Scholar
  21. 21.
    E. P. Trofimchuk, “Integral operators of the method of successive periodic approximations,”Mat. Fiz. Nelin. Mekh., Issue 15 (47), 31–36 (1990).MathSciNetGoogle Scholar
  22. 22.
    G. M. Vainikko,Compact Approximation of Operators and Approximate Solution of Equations [in Russian], Tartu University, Tartu (1970).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • M. I. Rontó
    • 1
  • A. M. Samoilenko
    • 1
  • S. I. Trofimchuk
    • 1
  1. 1.Academician, Ukrainian Academy of SciencesKievUSSR

Personalised recommendations