Bayesian stopping rules for multistart global optimization methods

Abstract

By far the most efficient methods for global optimization are based on starting a local optimization routine from an appropriate subset of uniformly distributed starting points. As the number of local optima is frequently unknown in advance, it is a crucial problem when to stop the sequence of sampling and searching. By viewing a set of observed minima as a sample from a generalized multinomial distribution whose cells correspond to the local optima of the objective function, we obtain the posterior distribution of the number of local optima and of the relative size of their regions of attraction. This information is used to construct sequential Bayesian stopping rules which find the optimal trade off between reliability and computational effort.

This is a preview of subscription content, log in to check access.

References

  1. R.W. Becker and G.V. Lago, “A global optimization algorithm”, in:Proceedings of the 8th Allerton Conference on Circuits and System Theory (1970).

  2. H.C.P. Berbee, C.G.E. Boender, A.H.G. Rinnooy Kan, C.L. Scheffer, R.L. Smith and J. Telgen, “Hit-andrun algorithms for the identification of nonredundant linear inequalities” (1985), to appear inMathematical Programming.

  3. C.G.E. Boender, A.H.G. Rinnooy Kan, L. Stougie and G.T. Timmer, “A stochastic method for global optimization,”Mathematical Programming 22, (1982) 125–140.

    MATH  Article  MathSciNet  Google Scholar 

  4. C.G.E. Boender and R. Zielinski, “A sequential Bayesian approach to estimating the dimension of multinomial distribution”, in: R. Zielinski, (ed.)Sequential Methods in Statistics (Banach Center Publications (vol. 16), PWN-Polish Scientific Publishers, Warsaw, 1982).

    Google Scholar 

  5. C.G.E. Boender and A.H.G. Rinnooy Kan, “A Bayesian analysis of the number of cells of a multinomial distribution,”The Statistician 32 (1983a) 240–248.

    Article  Google Scholar 

  6. C.G.E. Boender and A.H.G. Rinnooy Kan (1983b), “Bayesian multinomial estimation of animal population size”, Report 8322/0, Econometric Institute, Erasmus University (Rotterdam, 1983b).

    Google Scholar 

  7. C.G.E. Boender “The generalized multinomial distribution: A Bayesian analysis and applications”, Ph.D. Thesis, Erasmus University, (Rotterdam, 1984).

    Google Scholar 

  8. L.C.W. Dixon and G.P. Szegö, eds.,Towards Global Optimisation (North-Holland, Amsterdam, 1975).

    Google Scholar 

  9. L.C.W. Dixon and G.P. Szegö, eds.,Towards Global Optimisation 2 (North-Holland, Amsterdam, 1978).

    Google Scholar 

  10. M.H. De Groot,Optimal Statistical Decisions (McGraw-Hill, New York, 1970).

    Google Scholar 

  11. A.H.G. Rinnooy Kan and G.T. Timmer, “A stochastic approach to global optimization”, Report 8419/0, Econometric Institute, Erasmus University (Rotterdam, 1984).

    Google Scholar 

  12. A.H.G. Rinnooy Kan and G.T. Timmer (1985), “Stochastic global optimization methods, Parts I & II”, Econometric Institute, Erasmus University (Rotterdam, 1985).

    Google Scholar 

  13. G.T. Timmer, “Global optimization: A stochastic approach” Ph.D. Thesis, Erasmus University (Rotterdam, 1984).

    Google Scholar 

  14. S.S. Wilks,Mathematical Statistics (Wiley, New York, 1962).

    Google Scholar 

  15. R. Zielinski, (1981), A statistical estimate of the structure of multiextremal problems,Mathematical Programming 21 (1981) 348–356.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boender, C.G.E., Rinnooy Kan, A.H.G. Bayesian stopping rules for multistart global optimization methods. Mathematical Programming 37, 59–80 (1987). https://doi.org/10.1007/BF02591684

Download citation

Key words

  • Global optimization
  • multistart methods
  • clustering methods
  • Bayesian stopping rules
  • multinomial distribution