Skip to main content
Log in

Molecular dynamic study of hydrophilicity of the NaCl molecule

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The NaCl molecule is represented as a physical dipole in which the distance between the ions equals that in the crystal lattice of NaCl. The water molecules, initially uniformly distributed in the sphere around the NaCl molecule, in 1 or 2 ps form a hydration shell around the positively charged sodium ion, leaving the negatively charged chloride ion naked. When the number of water molecules around the sodium ion reaches 14, the NaCl(H2O)14 cluster becomes sensitive only to thermal perturbations that are due to the librational motion of water molecules. It is shown that the dependence of the cluster volume on the number of water molecules in the cluster does not admit simple linear approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Prokhorov, (ed.),Physical Encyclopedia [in Russian], Vol. 1, Sovetskaya Éntsiklopediya, Moscow (1988).

    Google Scholar 

  2. A. Ben Naim,Water and Aqueous Solution, Plenum, New York (1974).

    Google Scholar 

  3. A. G. Stromberg and D. P. Semchenko,Physical Chemistry [in Russian], Vysshaya Shkola, Moscow (1988).

    Google Scholar 

  4. J. Caldwell, L. X. Dang, and P. A. Kollman,J. Am. Chem. Soc.,112, 9144 (1990).

    Article  CAS  Google Scholar 

  5. E. N. Brodskaya and A. I. Rusanov,Mol. Phys.,62, 251 (1990).

    Article  Google Scholar 

  6. L. X. Dang, J. E. Rice, J. Caldwell, and P. A. Kollman,J. Am. Chem. Soc.,113, No. 7, 2481 (1991).

    Article  CAS  Google Scholar 

  7. L. Perera and M. L. Berkowitz,J. Chem. Phys.,95, 1954 (1991).

    Article  CAS  Google Scholar 

  8. B. M. Pettitt, and P. J. Rossky, ——ibid,84, No. 10, 5836 (1986).

    Article  CAS  Google Scholar 

  9. L. X. Dang and B. M. Pettitt,J. Phys. Chem.,94, No. 10, 4303 (1990).

    Article  CAS  Google Scholar 

  10. A. N. Matveev,Molecular Physics [in Russian], Vysshaya Shkola, Moscow (1981).

    Google Scholar 

  11. M. J. L. Sangster and R. M. Atwood,J. Phys. C,11, 1541 (1987).

    Article  Google Scholar 

  12. D. Eisenberg and W. Kauzmann,The Structure and Properties of Water, Oxford University Press, London (1969).

    Google Scholar 

  13. F. J. Vesely,J. Comput. Phys.,24, 361 (1977).

    Article  CAS  Google Scholar 

  14. J. P. Ryckaert,Mol. Phys.,55, No. 3, 549 (1985).

    Article  CAS  Google Scholar 

  15. L. Verlet,Phys. Rev.,159, No. 1, 98 (1967).

    Article  CAS  Google Scholar 

  16. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen,J. Comput. Phys.,23, 327 (1977).

    Article  CAS  Google Scholar 

  17. R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York (1975).

    Google Scholar 

  18. J. M. Ziman,Models of Disorder, Cambridge University, Cambridge (1979).

    Google Scholar 

  19. S. T. Arnold, J. G. Eaton, D. Patel-Misra, et al., in:Ion and Cluster Ion Spectroscopy and Structure, J. Mair (ed.), Elsevier, Amsterdam (1989).

    Google Scholar 

  20. X. Yang, X. Zhang, and A. W. Castleman,J. Phys. Chem.,95, 8520 (1991).

    Article  CAS  Google Scholar 

  21. K. Hiraoka, S. Misuze, and S. Yanabe, ——ibid.,92, 3943 (1988).

    Article  CAS  Google Scholar 

  22. P. Cieplak, T. Lybrand, and P. Kollman,J. Chem. Phys.,87, 6393 (1987).

    Article  Google Scholar 

  23. I. P. Bazarov,Thermodynamics [in Russian], Vysshaya Shkola Moscow (1976).

    Google Scholar 

  24. J. L. Lebowitz,Phys. Rev. 153, No. 1, 250 (1967).

    Article  CAS  Google Scholar 

  25. T. L. Hill,Statistical Mechanics. Principles and Selected Applications, McGraw-Hill, New York (1956).

    Google Scholar 

  26. R. W. Hockney and J. W. Eastwood,Computer Simulation Using Particles, McGraw-Hill, New York (1981).

    Google Scholar 

  27. Y. K. Kang, G. Nemethy, and H. A. Scheraga,J. Phys. Chem.,91, 4105 (1987).

    Article  CAS  Google Scholar 

  28. V. K. Semenchenko,Selected Chapters of Theoretical Physics [in Russian], Prosveshcheniye, Moscow (1966).

    Google Scholar 

  29. A. E. Galashev,Zh. Strukt. Khim.,25, No. 7, 71 (1984).

    CAS  Google Scholar 

  30. L. Perera and M. L. Berkowitz,J. Chem. Phys.,100, No. 4, 3085 (1994).

    Article  CAS  Google Scholar 

  31. I. Ruff and D. J. Diestler, ——ibid.,93, No. 3, 2032 (1990).

    Article  CAS  Google Scholar 

  32. F. Sciortino, A. Geiger, and H. E. Stanley, ——ibid.,96, No. 5, 3857 (1992).

    Article  CAS  Google Scholar 

  33. E. C. Zhong and H. L. Friedman,J. Phys. Chem. 92 No. 6, 1685 (1988).

    Article  CAS  Google Scholar 

Download references

Authors

Additional information

Institute of Thermal Physics, Ural Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 37, No. 2, pp. 299–309, March–April, 1996.

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigon, F., Servida, A. & Galashev, A.E. Molecular dynamic study of hydrophilicity of the NaCl molecule. J Struct Chem 37, 260–269 (1996). https://doi.org/10.1007/BF02591056

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02591056

Keywords

Navigation