Skip to main content
Log in

Mecanismo de acción de la insulina y sus receptores celulares

  • Lavori Originali
  • Published:
Acta diabetologia latina Aims and scope Submit manuscript

Riassunto

Sono stati studiati gli effetti dell’insulina sulla capazione del glucosio da parte del grasso epididimale di ratto e sulla contrazione del muscolo striato di rana. Si è appurato che tanto l’azione metabolica quanto l’effetto meccanico potrebbero esplicarsi sullo stesso recettore a livello della membrana. Si adombra la possibilità che l’ormone agisca sopra un’ATPasi Ca++-, Mg++- e K+-dipendente, data la forte somiglianza tra l’azione dell’insulina e quella della ouabaina. Si ritiene che l’effetto dell’insulina potrebbe essere causato dall’interazione tra l’ormone e il recettore della membrana e dal suo effetto sui cationi divalenti Ca++ ed Mg++ che potrebbe alterate la conformazione della membrana cellulare. Il cambiamento di posizione dei cationi produce modificazioni del campo fisico-chimico che potrebbero a loro volta contribuire all’azione sulla membrana e scatenare le reazioni biochimiche endocellulari.

Résumé

On a étudié les effets de l’insuline sur l’absorption du glucose à niveau de la graisse épididymaire du rat et sur la contraction du muscle strié de la grenouille. On a trouvé que l’action sur le métabolisme et l’effet mécanique possèdent un récepteur commun à niveau de la membrane cellulaire. On suggère la possibilité que cet effet soit du à une ATPase sensible aux cations Ca++, Mg++ et K+, puisqu’on a remarqué une grande ressemblance entre l’action de l’insuline et celle de l’ouabaine. L’action de l’insuline pourrait se réaliser au moyen de sa fixation sur le récepteur de la membrane et sur les cations divalents Ca++ et Mg++, en provoquant une altération structurale de la membrane. Le changement de position des cations produit des altérations physico-chimiques qui peuvent non seulement avoir une action sur la membrane mais aussi déchaîner les réactions chimiques à l’intérieur de la cellule.

Resumen

Se estudia el efecto de la insulina sobre la capación de glucosa por la grasa epididimaria de la rata y sobre la contracción muscular estriada de la rana. Se encuentra que tanto la acción metabólica como la mecánica, puedan tener un receptor común a nivel de la membrana celular. Se sugiere la posibilidad de que el efecto sea sobre una ATPasa Ca++-, Mg++- y K+-dependiente, ya que se encontró similitud con la acción de la ouabaína. Se sugiere que la acción de la insulina pueda ser a través de su fijación en el receptor de la membrana y sobre los cationes divalentes Ca++ y Mg++ lo cual produce una alteración en la conformación de la membrana. La traslocación de los cationes provoca alteraciones en el campo fisicoquímico que además de contribuir a la acción sobre la membrana desencadena las reacciones bioquímicas en el interior de la célula.

Zusammenfassung

Der Verfasser untersuchte die Witkung von Insulin auf die Glukoseaufnahme des epididymalen Fettes der Ratte und auf die Kontraktion des gestreiften Froschmuskels. Es wurde festgestellt, dass die metabolische und die mechanische Wirkung einen gemeinsamen Rezeptor an der Zellmembran haben könnten, und es wird die Möglichkeit in Betracht gezogen, dass die Wirkung über eine Ca++-, Mg++- und K+-abhängige ATPase zustandekommt, da sie der Ouabainwirkung ähnlich ist. Weiterhin wird angenommen, dass der Insulineffekt durch die Wechselwirkungen zwischen dem Rezeptor der Zellmembran und den divalenten Kationen Ca++ und Mg++ zustandekommt, welche die Konformation der Zellmembran ändern. Die veränderte Stellung der Kationen führt zu Veränderungen des physikalisch-chemischen Zustandes, welche ebenfalls die Wirkung auf die Zellmembran beeinflussen und zur Auslösung der intrazellulären biochemischen Reaktionen beitragen konnten.

Summary

The effects of insulin on glucose uptake by rat epididymal fat pad and on frog striated muscle contraction were studied. It was found that both the metabolic action and the mechanical effect could have a common receptor at the membrane level. The possibility that the effect could be on a Ca++-, Mg++- and K+-dependent ATPase is suggested because a strong similarity between the actions of insulin and ouabain was found. It is thought that the action of insulin could be caused through its interaction with the membrane receptor and on the divalent cations Ca++ and Mg++ which might alter the conformation of the cellular membrane. The change in position of the cations produces alterations of the physicochemical field which might also contribute to the action on the membrane and trigger the intracellular biochemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ball E. G., Martin D. V., Cooper O.: Studies on the Metabolism of Adipose Tissue. I. The Effect of Insulin on Glucose Utilization as Measured by the Manometric Determination of Carbon Dioxide Output — J. biol. Chem.234, 774, 1959.

    PubMed  CAS  Google Scholar 

  2. Balmain G. H., French T. H., Folley S. J.: Stimulation by Insulin of in Vitro Fat Synthesis by Lactating Mammary Gland Slices — Nature (Lond.)165, 807, 1950.

    Article  CAS  Google Scholar 

  3. Crofford O. B., Jeanrenaud B., Renold A. E.: Effect of Insulin on the Transport and Metabolism of Sorbitol by Incubated Rat Epididymal Adipose Tissue — Biochim. biophys. Acta (Amst.)111, 429, 1965.

    CAS  Google Scholar 

  4. Crofford O. B., Renold A. E.: Glucose Uptake by Incubated Rat Epididymal Adipose Tissue. Rate-Limiting Steps and Site of Insulin Action — J. biol. Chem.240, 14, 1965.

    PubMed  CAS  Google Scholar 

  5. Crofford O. B., Renold A. E.: Glucose Uptake by Incubated Rat Epididymal Adipose Tissue. Characteristics of the Glucose Transport System and Action of Insulin — J. biol. Chem.240, 3237, 1965.

    PubMed  CAS  Google Scholar 

  6. Cuatrecasas P.: Properties of the Insulin Receptor of Isolated Fat Cell Membranes — J. biol. Chem.246, 7265, 1971.

    PubMed  CAS  Google Scholar 

  7. Cuatrecasas P.: The Insulin Receptor — Diabetes21 (Suppl. 2), 396, 1972.

    PubMed  CAS  Google Scholar 

  8. Eisenman G.: Some Elementary Factors Involved in Specific Ion Permeation — Proc. 23rd Int. Congr. Physiol. Sci. 1965; p. 489.

  9. Goldacre R. J.: The Role of the Cell Membrane in the Locomotion of Amoebae, and the Source of the Motive Force and its Control by Feedback — Exp. Cell Res.8 (Suppl.), 1, 1961.

    Article  PubMed  Google Scholar 

  10. Goldacre R. J., Lorch I. J.: Folding and Unfolding of Protein Molecules in Relation to Cytoplasm Streaming. Ameboid Movement and Osmotic Work — Nature (Lond.)166, 497, 1950.

    Article  CAS  Google Scholar 

  11. Haugaard N., Marsh J. B.: Effect of Insulin on the Metabolism of Adipose Tissue from Normal Rats — J. biol. Chem.194, 33, 1952.

    PubMed  CAS  Google Scholar 

  12. Heinz E.: Transport through Biological Membranes — Ann. Rev. Physiol.29, 21, 1967.

    Article  CAS  Google Scholar 

  13. Hemmingsen A. M., Krogh A.: The Assay of Insulin by the Convulsive-Dose Method on White Mice — League of Nations, Rep. III Health Org.7, Ch 398, 1926.

    Google Scholar 

  14. Herrera F. C., Whittembury G., Planchart A.: Effect of Insulin on Short-Circuit Current across Isolated Frog Skin in the Presence of Calcium and Magnesium — Biochim. biophys. Acta (Amst.)66, 170, 1963.

    Article  CAS  Google Scholar 

  15. Ho R. J., Jeanrenaud B.: Insulin-Like Action of Ouabain. Effect on Carbohydrate Metabolism — Biochim. biophys. Acta (Amst.)144, 61, 1967.

    CAS  Google Scholar 

  16. Jones B. M.: A Unifying Hypothesis of Cell Adhesion — Nature (Lond.)212, 362, 1966.

    Article  CAS  Google Scholar 

  17. Jones P. C. T.: A Contractile Protein Model for Cell Adhesion — Nature (Lond.)212, 365, 1966.

    Article  CAS  Google Scholar 

  18. Kujalová V., Mosinger B.: Cold- and Ouabain-Sensitive Uptake of Glucose Stimulated by Insulin in Incubated Rat Adipose Tissue — Biochim. biophys. Acta (Amst.)127, 255, 1966.

    Google Scholar 

  19. Kuo J. F., Holmund C. E., Dill I. K.: The Effect of Proteolytic Enzymes on Isolated Adipose Cells — Life Sci.5, 2257, 1966.

    Article  PubMed  CAS  Google Scholar 

  20. Levine R.: The Action of Insulin at the Cell Membrane — Amer. J. Med.40, 691, 1966.

    Article  PubMed  CAS  Google Scholar 

  21. Levine R., Goldstein M., Huddleston B., Klein S. P.: Action of Insulin on the Permeability of Cells to Free Hexoses as Studied by its Effects on the Distribution of Galactose — Amer. J. Physiol.163, 70, 1950.

    PubMed  CAS  Google Scholar 

  22. Martin D. B., Renold A. E.: An Assay for Insulin-Like Activity Using Rat Adipose Tissue — Lancet2, 76, 1958.

    Article  PubMed  CAS  Google Scholar 

  23. Morgan H. E., Regen D. M., Park C. R.: Identification of a Mobile Carrier-Mediated Sugar Transport System in Muscle — J. biol. Chem.239, 369, 1964.

    PubMed  CAS  Google Scholar 

  24. Park C. R., Reinwein D., Henderson M. J., Cadenas E., Morgan H. E.: The Action of Insulin on the Transport of Glucose through the Cell Membrane — Amer. J. Med.26, 674, 1959.

    Article  PubMed  CAS  Google Scholar 

  25. Planchart A.: Potentiation of Insulin Action by Calcium and Magnesium — Diabetes14, 430, 1965.

    PubMed  CAS  Google Scholar 

  26. Planchart A.: Potentiation of the Hypoglycemic Action of Insulin by Calcium and Magnesium — Acta cient. venez.19, 185, 1968.

    PubMed  CAS  Google Scholar 

  27. Planchart A.: Insulina e iones divalentes — Gac. Méd. Caracas96, 175, 1968.

    Google Scholar 

  28. Planchart A., Alvarez A., Frontado H., Paredes R.: Acción de algunas sustancias que provocan consumo de glucosa, sobre la contracción muscular — Acta cient. venez.21 (Suppl. 2), 24, 1970.

    Google Scholar 

  29. Planchart A., Fajardo A., Rios L.: Potencia de la ouabaína en unidades de insulina — Acta cient. venez.23 (Suppl. 1), 38, 1972.

    Google Scholar 

  30. Randle P. J., Morgan H. E.: Regulation of Glucose Uptake by Muscle — Vitam. and Horm.20, 199, 1962.

    CAS  Google Scholar 

  31. Renold A. E., Martin D. B., Dagenais M., Steinke J., Nickerson R. J., Sheps M. C.: Measurement of Small Quantities of Insulin-Like Activity Using Rat Adipose Tissue. I. A Proposed Procedure — J. clin. Invest.39, 1487, 1960.

    Article  PubMed  CAS  Google Scholar 

  32. Rodbell M.: Metabolism of Isolated Fat Cells. I. Effects of Hormones on Glucose Metabolism and Lipolysis — J. biol. Chem.239, 375, 1964.

    PubMed  CAS  Google Scholar 

  33. Skou J. C.: Enzymatic Basis for Active Transport of Na+ and K+ across Cell Membrane — Physiol. Rev.45, 596, 1965.

    PubMed  CAS  Google Scholar 

  34. Trevan J. W., Boock E.: The Standardization of Insulin by the Determination of the Convulsive Dose for Mice — League of Nations, Rep. III Health Org.7, Ch 398, 1926.

  35. Umbreit W. W., Burris R. H., Stauffer J. F.: Manometric Techniques — Burgess Publ. Co., Minneapolis, 1959; p. 149.

    Google Scholar 

  36. Ussing H. H., Zerahn K.: Active Transport of Sodium as the Source of Electric Current in the Short-Circuited Isolated Frog Skin — Acta physiol. scand.23, 110, 1951.

    Article  PubMed  CAS  Google Scholar 

  37. Wilbrand W.: Transport through Biological Membranes — Ann. Rev. Physiol.25, 601, 1963.

    Article  Google Scholar 

  38. Zierler K. L.: Insulin, Ions, and Membrane Potentials — In:Steiner D. F., Freinfel N. (Eds): Handbook of Physiology. Section 7: Endocrinology. Vol. I. Endocrine Pancreas. Amer. Physiol. Soc. Washington, 1972; p. 347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura dell’A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planchart, A. Mecanismo de acción de la insulina y sus receptores celulares. Acta diabet. lat 10, 1269–1285 (1973). https://doi.org/10.1007/BF02590714

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02590714

Key-words

Navigation