Metallurgical and Materials Transactions A

, Volume 37, Issue 7, pp 2097–2106 | Cite as

Effect of load redistribution in transient plastic flow

  • Wei Gan
  • Peihui Zhang
  • Robert H. Wagoner
  • Glenn S. Daehn


Creep transients are commonly described either by a change in the isotropic strength of a material due to an increase in dislocation density or by a change in directional hardening, often described by a backstress. Here we look at transients as developed by load redistribution among regions of material with differing local strength in finite element simulations. No strain hardening or backstress exists in our material description. Two types of material models are used. The first contains grains of binary strength; the other uses grains with a continuous distribution of strengths. Both 2D and 3D analyses were performed. It was found that the load redistribution process is an important source of the transients in both creep and tensile testing. An equivalent stress quantity to track the strength of a sample during deformation is proposed. Using this quantity, a single load-shedding curve can be obtained that describes both the tensile and creep tests. This unifies the material constitutive behavior for the very different boundary conditions seen in creep and fixed-rate testing. Lastly, it is shown that from this general model we can also develop realistic anelasticity and Bauschinger transients.


Material Transaction Plastic Strain Cellular Automaton Creep Test Bauschinger Effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Brehm and G.S. Daehn:Metall. Trans. A, 2002, vol. 33 (2), pp. 363–71.Google Scholar
  2. 2.
    G.S. Daehn:Mater. Sci. Eng. A, 2001, vol. 319, pp. 765–69.CrossRefGoogle Scholar
  3. 3.
    G.S. Daehn:Acta Mater., 2001, vol. 49 (11), pp. 2017–26.CrossRefGoogle Scholar
  4. 4.
    A.S. Argon and A.K. Bhattacharya:Acta Metall., 1987, vol. 35 (7), pp. 1499–514.CrossRefGoogle Scholar
  5. 5.
    R.P. Carreker, Jr.:J. App. Phys., 1950, vol. 21 (12), pp. 1289–96.CrossRefGoogle Scholar
  6. 6.
    B.C. Odegard and A.W. Thompson:Metall. Trans. A, 1974, vol. 5 (5), pp. 1207–13.Google Scholar
  7. 7.
    W.H. Miller, R.T. Chen, and E.A. Starke:Metall. Trans. A, 1987, vol. 18 (8), pp. 1451–68.Google Scholar
  8. 8.
    S. Suri, T. Neeraj, G.S. Daehn, D.H. Hou, J.M. Scott, R.W. Hayes, and M.J. Mills: in7th International Conference on Creep and Fracture of Engineering Materials and Structures, 1997, TMS-AIME Press, Warrendale PA, pp. 119–28.Google Scholar
  9. 9.
    J.D. Luhban and R.P. Felgar:Plasticity and Creep of Metals, Wiley, New York, 1961.Google Scholar
  10. 10.
    M.F. Savage: Ph.D. Thesis, Ohio State University, Columbus, Ohio, 2000.Google Scholar
  11. 11.
    F. Roters, D. Raabe, and G. Gottstein:Acta Mater., 2000, vol. 48 (17), pp. 4181–89.CrossRefGoogle Scholar
  12. 12.
    B. Peeters, M. Seefeldt, C. Teodosiu, S.R. Kalidindi, P. Van Houtte, and E. Aernoudt:Acta Mater., 2001, vol. 49 (9), pp. 1607–19.CrossRefGoogle Scholar
  13. 13.
    B. Peeters, B. Bacroix, C. Teodosiu, P. Van Houtte, and E. Aernoudt:Acta Mater., 2001, vol. 49 (9), pp. 1621–32.CrossRefGoogle Scholar
  14. 14.
    W.F. Hosford and R.H. Zeisloft:Metall. Trans. A, 1972, vol. 3, pp. 113–21.Google Scholar
  15. 15.
    M.T. Lyttle and J.A. Wert:Metall. Trans. A, 1996, vol. 27 (11), pp. 3503–12.CrossRefGoogle Scholar
  16. 16.
    J.D. Eshelby:Proc. R. Soc. Lond, 1957, vol. A241, pp. 376–96.Google Scholar
  17. 17.
    P. Bate, W.T. Roberts, and D.V. Wilson:Acta Metall. Mater., 1981, vol. 29 (11), pp. 1797–814.CrossRefGoogle Scholar
  18. 18.
    F. Barlat and J. Liu:Mat. Sci. Eng. A, 1998, vol. 257 (1), pp. 47–61.CrossRefGoogle Scholar
  19. 19.
    C.S. Han, R.H. Wagoner, and F. Barlat:Int. J. Plast., 2004, vol. 20 (3), pp. 477–94.CrossRefGoogle Scholar
  20. 20.
    C.S. Han, R.H. Wagoner, and F. Barlat:Int. J. Plast., 2004, vol. 20 (8–9), pp. 1441–61.CrossRefGoogle Scholar
  21. 21.
    F. Barlat, J.M.F. Duarte, J.J. Gracio, A.B. Lopes, and E.F. Rauch:Int. J. Plast., 2003, vol. 19 (8), pp. 1215–44.CrossRefGoogle Scholar
  22. 22.
    A.B. Lopes, F. Barlat, J.J. Gracio, J.F.F. Duarte, and E.F. Rauch:Int. J. Plast., 2003, vol. 19 (1), pp. 1–22.CrossRefGoogle Scholar
  23. 23.
    S.C. Baxter and A.P. Reynolds:Prob. Eng. Mech., 2004, vol. 19, pp. 3–8.CrossRefGoogle Scholar
  24. 24.
    V. Hasija, S. Ghosh, M.J. Mils, and D.S. Joseph:Acta Mater., 2003, vol. 51, pp. 4533–49.CrossRefGoogle Scholar
  25. 25.
    ABAQUS Standard 6.4-1, Hibbitt, Karlsson & Sorensen, Inc., 1080 Main Street, Pawtucket, RI 02860.Google Scholar
  26. 26.
    W.F. Hosford and R.M. Caddell:Metal Forming: Mechanics and Metallurgy, Prentice Hall, Englewood Cliffs, NJ, 1993.Google Scholar
  27. 27.
    O.B. Pedersen, L.M. Brown, and W.M. Stobbs:Acta Metall. Mater., 1981, vol. 29 (11), pp. 1843–50.CrossRefGoogle Scholar
  28. 28.
    P.S. Bate and D.V. Wilson:Acta Metall. Mater., 1986, vol. 34 (6), pp. 1097–105.CrossRefGoogle Scholar
  29. 29.
    L.M. Geng and R.H. Wagoner:Int. J. Mech. Sci., 2002, vol. 44, pp. 123–48.CrossRefGoogle Scholar
  30. 30.
    R.K. Boger, R.H. Wagoner, F. Barlat, M.G. Lee, and K. Chung:Int. J. Plast., 2005, vol. 21 (12), pp. 2319–43.CrossRefGoogle Scholar
  31. 31.
    Y.L. Shen, M. Finot, A. Needleman, and S. Suresh:Acta Metall. Mater., 1995, vol. 43 (4), pp. 1701–22.CrossRefGoogle Scholar
  32. 32.
    J. Llorca, A. Needleman, and S. Suresh:Scripta Metall. Mater., 1990, vol. 24 (7), pp. 1203–08.CrossRefGoogle Scholar
  33. 33.
    T. Sritharan and R.S. Chandel:Acta Mater., 1997, vol. 45 (8), pp. 3155–61.CrossRefGoogle Scholar
  34. 34.
    J.F. Wang, R.H. Wagoner, W.D. Carden, D.K. Matlock, and F. Barlat:Int. J. Plast., 2004, vol. 20 (12), pp. 2209–32.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Wei Gan
    • 1
  • Peihui Zhang
    • 1
  • Robert H. Wagoner
    • 2
  • Glenn S. Daehn
    • 2
  1. 1.Edison Welding InstituteColumbus
  2. 2.the Department of Materials Science and EngineeringThe Ohio State UniversityColumbus

Personalised recommendations