Skip to main content
Log in

Bubble blood oxygenator — A a design analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The behavior of a bubble blood oxygenator is simulated by a dispersion model. The model equations are solved by both a variable step size-finite difference algorithm and a backward marching technique. The computed results indicate that blood oxygen saturation increases with increases in column diameter and glas flow rate. The bubble column is found to behave like a continuously stirred tank reactor at large values of either the column diameter or the gas flow rate. The performance of Shiley and Harvey H-200 bubble oxygenators was compared with the dispersion model. The results were found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akita, K. Dr. Erg. Thesis, Kyoto University, Japan, 1973.

  2. Akita, K. and F. Yoshida. Gas hold-up and volumetric mass transfer coefficient in bubble columns: Effect of liquid properties.Ind. Eng. Chem., Process Des. Dev. 12:76–80, 1973.

    Article  CAS  Google Scholar 

  3. Akita, K. and F. Yoshida. Bubble size, interfacial area and liquid — phase mass transfer coefficient in bubble columns.Ind. Eng. Chem., Process Des. Dev. 13:84–91, 1974.

    Article  CAS  Google Scholar 

  4. Arunachalam, V.M., Ph.D. thesis. Indian Institute of Technology, Madras, India, 1979.

  5. Bergdahl, L. and V.O. Björk. Optimal gas flow in new Shiley bubble oxygenator.Scand. J. Thor. Cardiovasc. Surg. 12:55–57, 1972.

    Google Scholar 

  6. Björk, V.O., L. Bergdahl, and C. Wussow. Gas flow in relation to blood flow in oxygenators. An evaluation of the new Shiley bubble oxygenator.Scan. J. Thor. Cardiovasc. Surg. 71:422–425, 1977.

    Google Scholar 

  7. Buckles, R.G., E.W. Merrill, and E.R. Gilliland. An analysis of oxygen absorption in tubular membrane oxygenator.AIChE J. 14:703–708, 1968.

    Article  CAS  Google Scholar 

  8. Cantekin, E.I. and M.H. Weissman. Experimental and theoretical considerations in augmenting oxygen transfer in membrane artificial lungs.Med. Biol. Eng. Comput. 13:617–630, 1975.

    CAS  Google Scholar 

  9. Colton, C.K. and R.F. Drake. Effect of boundary conditions on oxygen transport to blood flowing in a tube.Chem. Eng. Prog., Symp. Ser. 67:88–95, 1971.

    CAS  Google Scholar 

  10. Danckwerts, P.V. Significance of liquid film coefficients in gas absorption.Ind. Eng. Chem. 43:1460–1467, 1951.

    Article  CAS  Google Scholar 

  11. Deckwar, W.D. Non-isobaric bubble columns with variable gas velocity. Chem. Eng. Sci. 31:309–317, 1976.

    Article  Google Scholar 

  12. Eissa, S.H., M.M. El-Halwagi, and M.A. Saleh. Axial and radial mixing in a cocurrent bubble column.Ind. Eng. Chem., Process Des. Dev. 10:31–36, 1971.

    Article  CAS  Google Scholar 

  13. Kolobow, T. and W.M. Zapol. Partial and total extracorporeal respiratory gas exchange with spiral membrane lung.Adv. Cardiol. 6:112–116, 1971.

    Google Scholar 

  14. Lande, A.J., S.J. Sillmore, V. Subramanian, R.N. Tiedman, and R.G. Carlson. 24 hours venous arterial perfusion of awake dog with a simple membrane oxygenator.Trans. Am. Soc. Artif. Inter. Organs 15:181–184, 1969.

    CAS  Google Scholar 

  15. Mockros, L.F. and M.H. Weissman. The artificial lung. In:Biomedical Engineering, edited by J.H.V. Brown, J.E. Jacobs and L. Stark, Philadelphia: F.A. Davis, Co., 1971.

    Google Scholar 

  16. Schultz, D.H., V.L. Shah, W. Shay, and P. Wang. Diffusion of oxygen and carbon dioxide through blood flowing in a channel.Med. Biol. Eng. Comput. 15, 98–105, 1977.

    Article  PubMed  CAS  Google Scholar 

  17. Shridharan, K. and Sharma, M.M. New systems and methods for the measurement of effective interfacial area on mass transfer coefficients.Chem. Eng. Sci., 31:767–774, 1976.

    Article  Google Scholar 

  18. Simmons, E., C. MaGuire, E. Lichti, W. Helvey, and C. Almond. A comparison of microparticles produced when two disposable bag oxygenators and a disc oxygenator are used for cardiopulmonary bypass.J. Thorac. Cardiovasc. Surg. 63:613, 1972.

    PubMed  CAS  Google Scholar 

  19. Szeri, A., Y.T. Shah, and A. Madgavker. Axial dispersion in two-phase cocurrent flow with fast and instantaneous reactions.Chem. Eng. Sci. 31:225–233, 1976.

    Article  CAS  Google Scholar 

  20. Weissman, M.H. Diffusion in membrane limited blood oxygenators.AIChE J. 15:627–631, 1969.

    Article  CAS  Google Scholar 

  21. Weissman, M.H. and T.K. Hung. Numerical Solution of Convective Diffusion in Blood Flowing in a Channel with a Steady Three Dimensional Velocity Field.AIChE J. 17:25–30, 1971.

    Article  Google Scholar 

  22. Weissman, M.H. and L.F. Mockros. Oxygen transfer to blood flowing in round tubes.Proc. Am. Soc. Civ. Eng., Journal of Engineering Mechanics Division. 93:EM6, 225–244, 1967.

    Google Scholar 

  23. Welleck, R.M. and T. Gurkan. Mass transfer in dispersed and continuous phases for creeping flow of fluid spheres through power law fluids.Ind. Eng. Chem. Fundam. 15, 45–52, 1976.

    Article  Google Scholar 

  24. Welleck, R.M. and T. Gurkan. Mass transfer to drops moving through power-law fluids in the intermediate Reynolds number region.AIChE J. 22:484–490, 1977.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arunachalam, V.M., Shettigar, U.R. Bubble blood oxygenator — A a design analysis. Ann Biomed Eng 9, 75–87 (1981). https://doi.org/10.1007/BF02584559

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584559

Keywords

Navigation